Synthesis and Characterization of V2O5 Nanorods on Different Substrates under Thermal Annealing

Authors

  • Arya Preshit Rajeshirke
  • Sana jay Biswas

Keywords:

Synthesis, nanorods, annealing

Abstract

Vanadium pentoxide (V?O?) nanorods have arisen as interesting functional materials owing to their distinctive one-dimensional structure, adjustable bandgap, and exceptional electrochemical and optical characteristics. Their synthesis and characterization under diverse thermal annealing conditions on various substrates have garnered considerable interest for applications in photodiodes, gas sensors, and electrochromic devices. Various synthetic methods, such as hydrothermal growth, spray pyrolysis, and chemical pyrophoric reactions, have facilitated the precise synthesis of V?O? nanorods exhibiting substrate-dependent structural, morphological, and electrical characteristics. Thermal annealing is essential for adjusting crystallinity, defect density, optical absorbance, and electrical conductivity. Recent research indicate that substrate type, annealing duration, and temperature substantially impact nanorod orientation, growth density, and interfacial characteristics, thereby affecting device performance. This paper synthesizes advancements in synthesis processes, annealing effects, and substrate influence on V?O? nanorods, establishing a basis for customizing nanostructures for energy, sensing, and optoelectronic applications.

Author Biographies

  • Arya Preshit Rajeshirke

    Garodia International Centre for Learning Mumbai, India-400077

  • Sana jay Biswas

    Pion Academy Mumbai, Maharashtra, India-400018

References

[1]. 1.Wang, Y. and G. Cao, Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chemistry of Materials, 2006. 18(12): p. 2787-2804.

[2]. Liu, X., et al., V 2 O 5-Based nanomaterials: synthesis and their applications. RSC advances, 2018. 8(8): p. 4014-4031.

[3]. Tong, Z., et al., Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Solar Energy Materials and Solar Cells, 2016. 146: p. 135-143.

[4]. Abd-Alghafour, N., et al., Fabrication and characterization of ethanol gas sensor based on hydrothermally grown V2O5 nanorods. Optik, 2020. 222: p. 165441.

[5]. Mouratis, K., et al., Annealing effect on the properties of electrochromic V2O5 thin films grown by spray deposition technique. Nanomaterials, 2020. 10(12): p. 2397.

[6]. Abd-Alghafour, N., et al., Influence of annealing duration on the growth of V2O5 nanorods synthesized by spray pyrolysis technique. Surface Review and Letters, 2016. 23(06): p. 1650057.

[7]. Steunou, N. and J. Livage, Rational design of one-dimensional vanadium (v) oxide nanocrystals: an insight into the physico-chemical parameters controlling the crystal structure, morphology and size of particles. CrystEngComm, 2015. 17(36): p. 6780-6795.

[8]. Yin, H., et al., Influence of morphologies and pseudocapacitive contributions for charge storage in V2O5 micro/nano-structures. Electrochimica Acta, 2013. 111: p. 762-770.

[9]. Raman, M.S., et al., Thermal annealing effects on structural, optical and electrical properties of V2O5 nanorods for photodiode application. Optik, 2018. 157: p. 410-420.

[10]. Takahashi, K., et al., Growth and electrochemical properties of single-crystalline V2O5 nanorod arrays. Japanese journal of applied physics, 2005. 44(1S): p. 662.

[11]. Tong, Z., et al., From amorphous macroporous film to 3D crystalline nanorod architecture: a new approach to obtain high‐performance V2O5 electrochromism. Advanced Materials Interfaces, 2015. 2(12): p. 1500230.

[12]. Niu, X., et al., Structure evolution of V2O5 as electrode materials for metal‐ion batteries. Batteries & Supercaps, 2023. 6(9): p. e202300238.

[13]. Guo, A., et al., A comprehensive review of the mechanism and modification strategies of V2O5 cathodes for aqueous zinc-ion batteries. ACS nano, 2024. 18(40): p. 27261-27286.

[14]. Majumdar, D., M. Mandal, and S.K. Bhattacharya, V2O5 and its carbon‐based nanocomposites for supercapacitor applications. ChemElectroChem, 2019. 6(6): p. 1623-1648.

[15]. Yue, Y. and H. Liang, Micro‐and nano‐structured vanadium pentoxide (V2O5) for electrodes of lithium‐ion batteries. Advanced Energy Materials, 2017. 7(17): p. 1602545.

[16]. Hu, P., et al., Vanadium oxide: phase diagrams, structures, synthesis, and applications. Chemical Reviews, 2023. 123(8): p. 4353-4415.

[17]. Shvets, P., et al., A review of Raman spectroscopy of vanadium oxides. Journal of Raman spectroscopy, 2019. 50(8): p. 1226-1244.

[18]. Smirnov, M.B., et al., Unraveling the structure–Raman spectra relationships in V2O5 polymorphs via a comprehensive experimental and DFT study. Inorganic chemistry, 2018. 57(15): p. 9190-9204.

[19]. Fu, Q., et al., V2O5 as a versatile electrode material for postlithium energy storage systems. Applied Research, 2023. 2(3): p. e202200070.

[20]. Smirnov, M.B., et al., Unraveling the structure-Raman spectra relationships in V.

[21]. Baddour-Hadjean, R., et al., Lattice dynamics of β-V2O5: Raman spectroscopic insight into the atomistic structure of a high-pressure vanadium pentoxide polymorph. Inorganic chemistry, 2012. 51(5): p. 3194-3201.

[22]. Luo, Y., et al., Cation reordering instead of phase transitions: Origins and implications of contrasting lithiation mechanisms in 1D ζ-and 2D α-V2O5. Proceedings of the National Academy of Sciences, 2022. 119(4): p. e2115072119.

[23]. Baddour‐Hadjean, R., et al., The Raman spectrum of the γ′‐V2O5 polymorph: a combined experimental and DFT study. Journal of Raman Spectroscopy, 2015. 46(4): p. 406-412.

[24]. Abd-Alghafour, N., G.A. Naeem, and S.M. Mohammad. Dependence of V2O5 nanorods properties on substrate type prepared by simple hydrothermal method. in Journal of Physics: Conference Series. 2020. IOP Publishing.

[25]. Takahashi, K., et al., Synthesis and electrochemical properties of single-crystal V2O5 nanorod arrays by template-based electrodeposition. The Journal of Physical Chemistry B, 2004. 108(28): p. 9795-9800.

[26]. Raman, M.S., et al., Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Materials Science in Semiconductor Processing, 2016. 41: p. 497-507.

[27]. Ingole, R., S. Kondawar, and B. Lokhande, Substrate dependent morphological and electrochemical properties of V2O5 thin films prepared by spray pyrolysis. Journal of Materials Science: Materials in Electronics, 2017. 28(3): p. 2385-2391.

[28]. Liu, H., et al., Analysis of structural morphological changes from 3DOM V2O5 film to V2O5 nanorods film and its application in electrochromic device. Solar Energy Materials and Solar Cells, 2022. 238: p. 111627.

[29]. Kumar, N.S., et al., V2O5 nano-rods using low temperature chemical pyrophoric reaction technique: The effect of post annealing treatments on the structural, morphological, optical and electrical properties. Superlattices and Microstructures, 2014. 65: p. 353-364.

[30]. Pepe, Y., et al., Thermally induced phase transition and defect‐assisted nonlinear absorption and optical limiting in nanorod morphology V2O5 thin films. Advanced Engineering Materials, 2021. 23(10): p. 2100468.

[31]. Wang, Y., et al., Synthesis and optical properties of V2O5 nanorods. The Journal of chemical physics, 2007. 126(16).

[32]. Gadient, J., et al., Low temperature synthesis of nanocrystalline V2O5 using the non-hydrolytic sol–gel method. Journal of Sol-Gel Science and Technology, 2019. 89(3): p. 663-671.

[33]. Livingstone, V.J., One-Pot In-Situ Synthesis of Conductive Polymer/Metal Oxide Composites. 2020: The University of Toledo.

[34]. Mu, J., et al., Hydrothermal synthesis and electrochemical properties of V2O5 nanomaterials with different dimensions. Ceramics International, 2015. 41(10): p. 12626-12632.

[35]. La, D., et al., Efficient degradation of methylene blue using hydrothermally synthesized V2O5 nanosheets: An innovative approach for sustainable wastewater treatment. Journal of the Taiwan Institute of Chemical Engineers, 2026. 178: p. 106324.

[36]. Kumar, R.R., K.U. Kumar, and D. Haranath, Synthesis, properties, and applications of transition metal oxide nanomaterials, in Multifunctional Nanostructured Metal Oxides for Energy Harvesting and Storage Devices. 2020, CRC Press. p. 1-73.

[37]. Basso, M., Solution-based oxide films for clean energy applications. 2024.

[38]. George, A. and Q. Yang, Gas sensing performance of Tungsten doped V2O5 nanorod thin-films deposited by hot filament CVD combined with DC sputtering. Sensors and Actuators B: Chemical, 2023. 394: p. 134371.

[39]. ; Available from: https://emsliegroup.mcmaster.ca/orf-re/ald.

[40]. Singh, M., et al., Plasma assisted synthesis and growth mechanism of rare V2O5 nanostructured thin films. Journal of Alloys and Compounds, 2017. 690: p. 532-541.

[41]. Liu, H., et al., Sputtering deposition of sandwich-structured V2O5/metal (V, W)/V2O5 multilayers for the preparation of high-performance thermally sensitive VO2 thin films with selectivity of VO2 (B) and VO2 (M) polymorph. ACS Applied Materials & Interfaces, 2016. 8(12): p. 7884-7890.

[42]. Al Otaibi, N., Synthesis and Characterization of Thermochromic VO2 (M) Films over Large Surface Substrates Using Radio Frequency (RF) Magnetron Sputtering. 2022, Alfaisal University (Saudi Arabia).

[43]. Beke, S., A review of the growth of V2O5 films from 1885 to 2010. Thin Solid Films, 2011. 519(6): p. 1761-1771.

[44]. Chen, D., J. Li, and Q. Wu, Review of V2O5-based nanomaterials as electrode for supercapacitor. Journal of Nanoparticle Research, 2019. 21(9): p. 201.

[45]. Poolakkandy, R.R. and M.M. Menamparambath, Soft-template-assisted synthesis: a promising approach for the fabrication of transition metal oxides. Nanoscale Advances, 2020. 2(11): p. 5015-5045.

[46]. Wu, H.B., et al., Template‐assisted formation of Rattle‐type V2O5 hollow microspheres with enhanced lithium storage properties. Advanced Functional Materials, 2013. 23(45): p. 5669-5674.

[47]. Kim, K. and M.-J. Lee, Template-assisted solvothermal assembly of size-controlled hierarchical V2O5 hollow microspheres with tunable nanoscale building blocks and their enhanced lithium storage properties. Electrochimica Acta, 2017. 258: p. 942-950.

[48]. Thakur, A., et al., Vanadium‐Based Nanostructure Materials for Advanced Lithium‐Ion Batteries: A Review. Nanostructured Materials for Energy Storage, 2024. 2: p. 563-600.

[49]. Ranu, R., et al., Synthesis and Characterization of V2O5 Nanorods Using Hydrothermal Method for Energy Application. Micro and Nanosystems, 2024. 16(1): p. 21-25.

[50]. Asim, N., et al., Vanadium pentoxide: synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous and Mesoporous Materials, 2009. 120(3): p. 397-401.

[51]. Lahiji, F.A.F., Growth and epitaxy of oxide thin films from conventional to van der Waals epitaxy. Vol. 2426. 2024: Linköping University Electronic Press.

[52]. Sechogela, T.P., Vanadium dioxide nanocomposite thin film embedded in zinc oxide matrix as tunable transparent conductive oxide. 2013, University of the Western Cape.

[53]. Silander, J., A study of optical and structural properties of spin-coated V2O3 thin films on sapphire substrates. 2022.

[54]. Gosavi, S. and R. Joshi, Modern Synthesis Techniques for Metal Oxides II, in Luminescent Metal Oxides. 2023, CRC Press. p. 45-68.

[55]. Juyal, S., et al., Development of integrated V2O5/mSi for supercapacitors: Exhibiting diffusion controlled charge storage dominance. Journal of Alloys and Compounds, 2023. 959: p. 170409.

[56]. White, S.T., et al., Substrate chemistry and lattice effects in vapor transport growth of vanadium dioxide microcrystals. Crystal Growth & Design, 2021. 21(7): p. 3770-3778.

[57]. Vijay, V.S., et al., Highly crystalline V2O5 and V6O13 thin films by PLD and a study on morphology transition of V2O5 by post annealing. Vacuum, 2021. 187: p. 110097.

[58]. Zhang, C., et al., Size, composition and alignment of VO2 microrod crystals by the reduction of V2O5 thin films, and their optical properties through insulator-metal transitions. Journal of Alloys and Compounds, 2020. 827: p. 154150.

[59]. Wenda, M., et al., Impacts of Surface Energy on Lithium Ion Intercalation Properties of V2O5. 2016.

[60]. Ma, H., J. Zhao, and G. Ma, Assembly surface superhydrophobic vanadium oxide nanowire pad and mesh. Inorganic Chemistry Communications, 2025. 178: p. 114624.

[61]. Priya, B., et al., Substrate-dependent fractal growth and wettability of N+ ion implanted V2O5 thin films. Applied Surface Science, 2023. 619: p. 156592.

[62]. Tien, L.-C. and Y.-J. Chen, Effect of surface roughness on nucleation and growth of vanadium pentoxide nanowires. Applied surface science, 2012. 258(8): p. 3584-3588.

[63]. Lazauskas, A., L. Marcinauskas, and M. Andrulevicius, Modification of graphene oxide/V2O5· n H2O nanocomposite films via direct laser irradiation. ACS applied materials & interfaces, 2020. 12(16): p. 18877-18884.

[64]. Koo, B.-R., J.-W. Bae, and H.-J. Ahn, Percolation effect of V2O5 nanorod/graphene oxide nanocomposite films for stable fast-switching electrochromic performances. Ceramics International, 2019. 45(9): p. 12325-12330.

[65]. Jain, A., et al., Vanadium oxide nanorods as an electrode material for solid state supercapacitor. Scientific reports, 2022. 12(1): p. 21024.

[66]. Gupta, R., et al., The effects of substrates on the structural, morphological, magnetic and electronic properties of V2O5 thin films. Journal of Sol-Gel Science and Technology, 2025. 113(3): p. 837-844.

[67]. Zhu, N.-W., et al., Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process. Chinese Physics B, 2014. 23(4): p. 048108.

[68]. Ferhati, F., et al., Fast growth of pure V2O5 nanoparticles by low-cost hydrothermal process. The European Physical Journal Applied Physics, 2021. 96(3): p. 30101.

[69]. Lin, T.-C., et al., Thermal annealing effects of V2O5 thin film as an ionic storage layer for electrochromic application. Materials, 2022. 15(13): p. 4598.

[70]. Tan, M.-Y., et al., Investigation of electrochromic performances of multicolor V2O5 devices fabricated at low processing temperature. Scientific Reports, 2025. 15(1): p. 1184.

[71]. Xu, H., et al., Effects of annealing ambient on oxygen vacancies and phase transition temperature of VO 2 thin films. RSC advances, 2016. 6(83): p. 79383-79388.

[72]. Song, S., et al., Reactive oxidation induced stoichiometric modulation of multivalent vanadium oxides. Small Science, 2024. 4(4): p. 2300171.

[73]. Wen, C., et al., A review of the preparation, properties and applications of VO2 thin films with the reversible phase transition. Frontiers in Materials, 2024. 11: p. 1341518.

[74]. Kodu, M., et al., Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor. Beilstein journal of nanotechnology, 2017. 8(1): p. 571-578.

[75]. Shrivathsa, V., et al., Mechanistic insights into the formation of phase pure V2O5 2D nanostructures: Advanced fourier transform-raman spectroscopy analysis. Thin Solid Films, 2025. 815: p. 140642.

[76]. Hevia, S.A., et al., High performance of V2O5 thin film electrodes for lithium-ion intercalation. Applied Surface Science, 2022. 576: p. 151710.

[77]. Jeyalakshmi, K., et al., Effect of annealing temperature on the supercapacitor behaviour of β-V2O5 thin films. Materials Research Bulletin, 2013. 48(2): p. 760-766.

[78]. Darroudi, N. and H. Eshghi, Effects of nozzle-to-substrate distance and annealing atmospheres on V2O5 thin films prepared by spray pyrolysis technique. Materials Science and Engineering: B, 2020. 262: p. 114726.

[79]. Alrammouz, R., et al., V2O5 gas sensors: A review. Sensors and Actuators A: Physical, 2021. 332: p. 113179.

[80]. Nguyet, T.T., et al., Transition from p-type to n-type semiconductor in V₂O₅ nanowire-based gas sensors: Synthesis and understanding of the sensing mechanism. Sensors and Actuators B: Chemical, 2025. 424: p. 136841.

[81]. Kabir, M.H., et al., Enhancement of photocatalytic performance of V2O5 by rare-earth ions doping, synthesized by facile hydrothermal technique. arXiv preprint arXiv:2301.06666, 2023.

[82]. Lima, F.A.S., et al., Flexible ITO-free organic solar cells applying aqueous solution-processed V2O5 hole transport layer: An outdoor stability study. Apl Materials, 2016. 4(2).

[83]. Jalil, M., et al., Impact of reaction temperatures on the particle size of V2O5 synthesized by facile hydrothermal technique and their auspicious photocatalytic performance in dye degradation. arXiv preprint arXiv:2205.04046, 2022.

[84]. Ahmmed, S., A. Aktar, and A.B.M. Ismail, Role of a solution-processed V2O5 hole extracting layer on the performance of CuO-ZnO-based solar cells. ACS omega, 2021. 6(19): p. 12631-12639.

[85]. Zhang, L., et al., V2O5 as hole transporting material for efficient all inorganic Sb2S3 solar cells. ACS Applied Materials & Interfaces, 2018. 10(32): p. 27098-27105.

[86]. Priya, B., et al., Structural, optical, and electrical properties of V2O5 thin films: Nitrogen implantation and the role of different substrates. Frontiers in Materials, 2022. 9: p. 1049189.

[87]. Le, T.K., et al., Recent advances in vanadium pentoxide (V 2 O 5) towards related applications in chromogenics and beyond: fundamentals, progress, and perspectives. Journal of Materials Chemistry C, 2022. 10(11): p. 4019-4071.

[88]. Sahoo, S., et al., Effect of annealing on properties of facile grown V2O5 nanoparticles and it’s application. Journal of Materials Science: Materials in Electronics, 2024. 35(22): p. 1548.

[89]. Jaffri, S.B., et al., Semiconductor V2O5-ZnO nano-rods driven efficient photovoltaic and electrochemical performance in multitudinous applications. Materials Science and Engineering: B, 2023. 298: p. 116911.

[90]. Sohaimi, K., J. Jaafar, and N. Rosman, Synthesis, properties, and applications of vanadium pentoxide (V2O5) as photocatalyst: a review. Malaysian Journal of Fundamental and Applied Sciences, 2023. 19(5): p. 901-914.

[91]. Shi, R., et al., Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide. Applied Physics Reviews, 2019. 6(1).

Downloads

Published

2025-11-19

Issue

Section

Articles

How to Cite

Arya Preshit Rajeshirke, & Sana jay Biswas. (2025). Synthesis and Characterization of V2O5 Nanorods on Different Substrates under Thermal Annealing. International Journal of Applied Sciences: Current and Future Research Trends , 23(1), 108-137. https://ijascfrtjournal.isrra.org/Applied_Sciences_Journal/article/view/1574