A Paradigm for Object Detection to Recognize and Classify Vehicles Using Computer Vision

Authors

Keywords:

Artificial intelligence (AI), Computer Vision, Edge Detection, Machine Learning, Neural Networks, Ensemble Methods, Data Analytics

Abstract

Computer vision has emerged as a game-changing technology in the mining industry, revolutionizing operations and unlocking various use case scenarios. With increased trade facilities, ports are recognized as one of the most diligent work environments globally. The applications of machine learning and computer vision in ports offer improved security, efficient container management, intelligent traffic management, predictive maintenance, automated operations, and environmental monitoring. These advancements contribute to streamlined processes, cost reduction, enhanced safety, and overall optimization in port environments. This study proposes an approach to detect and classify vehicles in a port during the wintertime in Finland using computer vision and machine learning methods. Due to the high variability between seasons, particularly winter and summer in Finland, there might be a need to categorize images by time of year. The study is developed as a model to detect and classify vehicles in the port area, and the port used in the study acts as an international hub for various trades and industries, including but not limited to chemistry and mining.

References

A. Naumann, F. Hertlein, L. Dörr, S. Thoma, and K. Furmans, “Literature review: Computer vision applications in transportation logistics and warehousing,” 2023, DOI: 10.48550/arXiv.2304.06009.

F. Hake, P. Lippmann, H. Alkhatib, V. Oettel, and I. Neumann, “Automated damage detection for port structures using machine learning algorithms in heightfields,” Appl Geom, vol. 15, no. 2, pp. 349–357, 2023, 10.1007/s12518-023-00493-z.

C. V. Ribeiro, A. Paes, and D. de Oliveira, “AIS-based maritime anomaly traffic detection: A review,” Expert Syst Appl, vol. 231, 2023, 10.1016/j.eswa.2023.120561.

Oy M. Rauanheimo Ab, “The port of Kokkola”, 2023, [Online]. Available: https://www.rauanheimo.com/en/the-port-of-kokkola/

Selenium. (2023). Software Freedom Conservancy. [Online]. Available: https://www.selenium.dev/

G. Bradski, “The OpenCV library,” Dr Dobb's Journal of Software Tools, vol. 25, no. 11, pp. 120–125, 2000.

C. R. Harris, J. K. Millman, S. J. van der Walt, R. Gomers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. Del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, ”Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, 2020, 10.1038/s41586-020-2649-2.

J. F. Canny, “A computational approach to edge detection,” IEEE Trans Pattern Anal Mach Intell, vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986, 10.1109/TPAMI.1986.4767851.

Lobe. (2021). Microsoft. [Online]. Available: https://www.lobe.ai/

D. A. Konovalov, S. Hillcoat, G. Williams, R. Alastair Birtles, N. Gardiner, and M. I. Curnock, “Individual minke whale recognition using deep learning convolutional neural networks,” J Geosci Environ Prot, vol. 6, pp. 25–36. 2018, 10.4236/gep.2018.65003.

LabelImg. (2015). Tzutalin. [Online]. Available: https://github.com/tzutalin/labelImg

J. Redmon, and A. Farhadi, “YOLOv3: An incremental improvement,” 2018, DOI: 10.48550/arXiv.1804.02767.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015, DOI: 10.48550/arXiv.1512.03385.

ImageAI. (2018). M. Olafenwa. [Online]. Available: https://github.com/OlafenwaMoses/ImageAI

M. Olafenwa, “Official English documentation for ImageAI! — ImageAI 3.0.2 documentation,” 2022, [Online]. Available: https://imageai. readthedocs.io/en/latest/

J. Brownlee, “How to perform object detection with YOLOv3 in Keras,” Oct. 8, 2019, [Online]. Available: https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-in-keras/

A. N. Huynh, “Training and detecting objects with YOLO3,” 2018, [Online]. Available: https://github.com/experiencor/keras-yolo3

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine learning in Python,” J Mach Learn Res, vol. 12, pp.2825–2830, 2011.

P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ?. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, A. Vijaykumar, A. P. Bardelli, A. Rothberg, A. Hilboll, A. Kloeckner, A. Scopatz, A. Lee, A. Rokem, C. N. Woods, C. Fulton, C. Masson, C. Häggström, C. Fitzgerald, D. A. Nicholson, D. R. Hagen, D. V. Pasechnik, E. Olivetti, E. Martin, E. Wieser, F. Silva, F. Lenders, F. Wilhelm, G. Young, G. A. Price, G. Ingold, G. E. Allen, G. R. Lee, H. Audren, I. Probst, J. P. Dietrich, J. Silterra, J. T. Webber, J. Slavi?, J. Nothman, J. Buchner, J. Kulick, J. L. Schönberger, J. V. de Miranda Cardoso, J. Reimer, J. Harrington, J. L. C. Rodríguez, J. Nunez-Iglesias, J. Kuczynski, K. Tritz, M. Thoma, M. Newville, M. Kümmerer, M. Bolingbroke, M. Tartre, M. Pak, N. J. Smith, N. Nowaczyk, N. Shebanov, O. Pavlyk, P. A. Brodtkorb, P. Lee, R. T. McGibbon, R. Feldbauer, S. Lewis, S. Tygier, S. Sievert, S. Vigna, S. Peterson, S. More, T. Pudlik, T. Oshima, T. J. Pingel, T. P. Robitaille, T. Spura, T. R. Jones, T. Cera, T. Leslie, T. Zito, T. Krauss, U. Upadhyay, Y. O. Halchenko, Y. Vázquez-Baeza, and SciPy 1.0 Contributors, “SciPy 1.0: fundamental algorithms for scientific computing in Python,” Nat Methods, vol. 17, no. 3, pp. 261–272, 2020, 10.1038/s41592-019-0686-2.

Joblib developers, 2021, “Joblib: running Python functions as pipeline jobs — joblib 1.3.0. dev0 documentation,” [Online]. Available: https://joblib.readthedocs.io/en/latest/

J. Sauvola and M. Pietikäinen, “Adaptive document image binarization,” Pattern Recognit, vol. 33, no. 2, pp. 225–236, 2000, 10.1016/S0031-3203(99)00055-2.

S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, T. Yu, and the scikit-image contributors, "scikit-image: image processing in Python," PeerJ, 2014, 10.7717/peerj.453.

Downloads

Published

2025-04-08

How to Cite

Pitkäkangas, V., Kaakinen, H., Tuunainen, T., Isohanni, O., & Jose, M. (2025). A Paradigm for Object Detection to Recognize and Classify Vehicles Using Computer Vision. International Journal of Applied Sciences: Current and Future Research Trends, 23(1), 1–20. Retrieved from https://ijascfrtjournal.isrra.org/index.php/Applied_Sciences_Journal/article/view/1482

Issue

Section

Articles