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Abstract  

This paper aims to study a new class of a stochastic SIS (susceptible, infected, susceptible) epidemic model where 

the transmission coefficient of the disease and the death rate are perturbed. By using the Khasminski theory, we 

establish suitable conditions under which the stochastic SIS model has a unique stationary distribution. The 

stationary of such model means that the disease will prevail. 
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1. Introduction 

Infectious diseases killed more beings humans in the course of history than any other cause and caused heavy 

economic losses as well. The mathematical modeling of the infectious disease play a crucial role in preventing the 

spread of these diseases, because it gives a vision of how these diseases spread and helps public authorities 

develop plans to reduce their spread or block it. The simplest structure of epidemic mathematical model is the SIS 

model formulated by Kermack and McKendrick [1] in which the total population (N) is divided into two classes, 

susceptible class (S) and infected class (I). The deterministic SIS model with mass action incidence is given by  

{
𝑑𝑆(𝑡) = [𝐴 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) + 𝜆𝐼(𝑡)]𝑑𝑡,

𝑑𝐼(𝑡) = [𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝜆 + 𝛼)𝐼(𝑡)]𝑑𝑡.  (1.1) 

The parameters in the model 1.1 are summarized in the following  

𝐴: a constant input of new  members into the population. 

𝛽: the disease transmission coefficient between compartments S and I.  

𝜇: the natural death rate of Susceptible and infected individuals.  

𝜆: the recovery rate of infected individuals.  𝛼: the disease caused death rate of infectious individuals.   
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As is well known, the environment is full of randomness and stochasticity. So, a lot of researchers studied the 

effect of randomness on the spread of infectious diseases [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. To include 

stochasticity into a deterministic model, there are many approches. We mention some approaches that are adopted 

most often. The first one is with parameters perturbation [2, 3, 4, 5, 6]. The second one is through time Markov 

chain [7, 8, 9, 10]. The last one is to pertube around the positive equilibria of deterministic models [11, 12, 13]. 

Several stochastic epidemic models are established by using the first approche mentioned above. Gray and his 

colleagues [14], formulated and analysed a stochastic version of the deterministic model 1.1 by using a Gaussian 

white noise to perturb the disease transmission coefficient 𝛽 . In [15], the authors studied a stochastic SIS 

epidemic model with media coverage by perturbing the natural death rate 𝜇 by a Gaussian white noise. 

In this paper, we consider that the rates 𝜇 and 𝛽 are simultaneously subject to random white noises. We replace  

𝜇𝑑𝑡   and  𝛽𝑑𝑡   in system 1.1 by  𝜇𝑑𝑡 + 𝜎1𝑑𝐵1(𝑡)  and  𝛽𝑑𝑡 + 𝜎2𝑑𝐵2(𝑡) respectively, where 𝐵𝑖(𝑡) is a 

standard Brownian motion and 𝜎𝑖 the intensity of its corresponding noise, for all 𝑖 ∈ {1,2}. Thus, we get the 

following new class of the stochastic SIS epidemic model  

{
𝑑𝑆(𝑡) = [𝐴 − 𝜇𝑆(𝑡) − 𝛽𝑆(𝑡)𝐼(𝑡) + 𝜆𝐼(𝑡)]𝑑𝑡 − 𝜎1𝑆(𝑡)𝑑𝐵1(𝑡) − 𝜎2𝑆(𝑡)𝐼(𝑡)𝑑𝐵2(𝑡),

𝑑𝐼(𝑡) = [𝛽𝑆(𝑡)𝐼(𝑡) − (𝜇 + 𝜆 + 𝛼)𝐼(𝑡)]𝑑𝑡 − 𝜎1𝐼(𝑡)𝑑𝐵1(𝑡) + 𝜎2𝑆(𝑡)𝐼(𝑡)𝑑𝐵2(𝑡).  (1.2) 

We focus here on establishing sufficient conditions for the existence of an ergodic stationary distribution for 

model (1.2).  Ergodicity is an important concept which can help us to predict the behaviour of the model (1.2) for 

a long time. The ergodicity means that the statistical properties of the stochastic model coincide with the temporal 

average of its solutions, which implies that the disease will prevail. 

The rest of the paper is organized as follows. In section 2, we present some Lemmas an Theorems which will be 

used in the following sections. In section 3, sufficient conditions are given under which the model 1.2 has a unique 

stationary distribution.  Finally, we close the paper with a brief conclusion. 

2. Background material 

Let  ℝ+
𝑑 = {(𝑥1, … , 𝑥𝑑) ∈ ℝ𝑑  : 𝑥𝑖 > 0, 𝑖 = 1, … , 𝑑}  , 𝑎𝑛𝑑 〈𝜑(𝑡)〉 =

1

𝑡
 ∫  

𝑡

0
𝜑(𝑟)𝑑𝑟. 

Concerning the existence and uniqueness of the global solution of model 1.2, we present the following Lemma.  

Theorem 2.1  

For any initial value (S(0), I(0)) ∈ ℝ+
2 , there is a unique solution (S(t), I(t)) ∈ ℝ+

2  and it remains in ℝ+
2  with 

probability one.  

Since the proof of the lemma is standard [16], we omit it here. 

Now , we consider the 𝑑-dimensional stochastic differential equation  
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𝑑𝑥(𝑡) = 𝑓(𝑥(𝑡), 𝑡)𝑑𝑡 + 𝑔(𝑥(𝑡), 𝑡)𝑑𝐵(𝑡)     𝑓𝑜𝑟  𝑎𝑙𝑙     𝑡 ≥ 𝑡0,    (2.1) 

with initial value 𝑥(0) = 𝑥0 ∈ ℝ𝑑. 𝐵(𝑡) denotes an n-dimensional standard Brownian. Denote by 𝒞2,1(ℝ𝑑 ×

[𝑡0, ∞]; ℝ+)  the family of all nonnegative functions 𝑉(𝑥, 𝑡)  defined on ℝ𝑑 × [𝑡0, ∞]  such that they are 

continuously twice differentiable in 𝑥 and once in 𝑡. The differential operator 𝐿 of Equation (2.1)  is defined by  

𝐿 =
𝜕

𝜕𝑡
+ ∑  𝑑

𝑖=1 𝑓𝑖(𝑥, 𝑡)
𝜕

𝜕𝑥𝑖
+

1

2
∑  𝑑

𝑖,𝑗=1 [𝑔𝑇(𝑥, 𝑡)𝑔(𝑥, 𝑡)]𝑖𝑗
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
. 

Next, we shall present a lemma which gives a criterion for the existence of a stationary distribution to system  

(1.2). 

Let 𝑋(𝑡) be a homogeneous Markov process in 𝐸𝑑  (𝐸𝑑  denotes 𝑑 −dimensional Euclidien space), and be 

described by the following stochastic differential equation  

𝑑𝑋(𝑡) = ℎ(𝑋(𝑡))𝑑𝑡 + ∑  𝑘
𝑟=1 𝑔𝑟(𝑋(𝑡))𝑑𝐵𝑟(𝑡) 

The diffusion matrix is defined as follows  

𝐴(𝑋) = (𝑎𝑖𝑗(𝑥)), 𝑎𝑖𝑗(𝑋) = ∑  𝑘
𝑟=1 𝑔𝑟

𝑖 (𝑋)𝑔𝑟
𝑗
(𝑋). 

Lemma 2.3 

 [18, Chapter 4]  The Markov process X(t) has a unique stationary distribution δ(. ) if there exists a bounded 

domain D ⊂ Ed with regular boundary Γ and 

(A.1)  In the open domain 𝑈 and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix 

𝐴(𝑋) 

 is bounded away from zero. 

(A.2)  If there exists a nonnegative 𝒞2-function 𝑉 such that 𝐿𝑉 is negative on 𝐸𝑑\𝐷. 

Then  

ℙx {lim
t→∞

1

t
∫  

t

0
Φ(X(s))ds = ∫  

Ed
Φ(x)δ(x)dx} = 1, 

for all 𝑥 ∈ 𝐸𝑑, where Φ(. ) is a function integrable with respect to the mesure 𝛿.   

3. The stationary distribution of the solution 

 Let’s denote by 𝑅0 =
𝛽𝐴

𝜇(𝜇+𝜆+𝛼)
 the basic reproduction number of the deterministic model (1.1) and by (𝑆∗, 𝐼∗) =
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(
𝜇+𝜆+𝛼

𝛽
,

𝜇(𝜇+𝜆+𝛼)

𝛽(𝜇+𝛼)
(𝑅0 − 1)) its endemic equilibrium.  

Theorem 3.1 

 If 𝑅0 > 1   and   0 < 𝜆3 < 𝑚𝑖𝑛(𝜆1𝑆∗
2, 𝜆2𝐼∗

2), the model 1.2 has a unique stationary    

distribution,  where  

𝜆1 = 𝜇 −
3

2
𝜎1

2 −
2𝜇+𝛼

𝛽
𝐼∗𝜎2

2, 

𝜆2 = 𝜇 + 𝛼 −
3

2
𝜎1

2, 

𝜆3 = 3𝜎1
2(𝑆∗

2 + 𝐼∗
2) +

(2𝜇+𝛼)𝐼∗

𝛽
(

𝜎1
2

2
+ 𝑆∗

2𝜎2
2). 

Proof. To show that the model (1.2)  has a unique stationary distribution, we only need to validate conditions 

(A.1) and (A.2) in Lemma  2.3. 

Now we verify the condition (A.1). 

Let 𝐷 be the full ellipse defined by  

𝐷 = {(𝑆(𝑡), 𝐼(𝑡)) ∈ ℝ+
2 : 𝜆1(𝑆(𝑡) − 𝑆∗)2 + 𝜆2(𝐼(𝑡) − 𝐼∗)2 ≤ 𝜆3}. 

The diffusion matrix of the model 1.2 is  

Δ(𝑆(𝑡), 𝐼(𝑡)) = (
𝜎1

2𝑆2(𝑡) + 𝜎2
2𝑆2(𝑡)𝐼2(𝑡) 𝜎1

2𝑆(𝑡)𝐼(𝑡) − 𝜎2
2𝑆2(𝑡)𝐼2(𝑡)

𝜎1
2𝑆(𝑡)𝐼(𝑡) − 𝜎2

2𝑆2(𝑡)𝐼2(𝑡) 𝜎1
2𝐼2(𝑡) + 𝜎2

2𝑆2(𝑡)𝐼2(𝑡)
). 

Let (𝑆(𝑡), 𝐼(𝑡)) ∈ ℝ+
2 and(𝜉1, 𝜉2) ∈ ℝ+

2 . Then   

∑  2
𝑖,𝑗=1 Δ𝑖𝑗(𝑆(𝑡), 𝐼(𝑡))𝜉𝑖𝜉𝑗 ≥ 𝜂(𝜉1

2 + 𝜉2
2), 

Where 

𝜂 = min
(𝑆(𝑡),𝐼(𝑡))∈𝐷

(𝜎1
2𝑆2(𝑡), 𝜎1

2𝐼2(𝑡), 𝜎2
2𝑆2(𝑡)𝐼2(𝑡)) 

Thus, condition (A.1) holds. 

To show that the condition (A.2) is verified, we define a 𝒞2-function 𝑉:  ℝ+
2 ⟶ ℝ+  as follows  

𝑉(𝑆, 𝐼) =
2𝜇+𝛼

𝛽
[𝐼 − 𝐼∗ − 𝐼∗ln(

𝐼

𝐼∗
)] +

1

2
(𝑆 − 𝑆∗ + 𝐼 − 𝐼∗)2 =

2𝜇+𝛼

𝛽
𝑉1 + 𝑉2. 
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Making use of the Itô’s formula [17], we obtain  

𝐿𝑉1 = (𝐼 − 𝐼∗)[𝛽𝑆 − (𝜇 + 𝜆 + 𝛼)] +
𝜎1

2

2
𝐼∗ +

𝜎2
2

2
𝐼∗𝑆2, 

          ≤ (𝐼 − 𝐼∗)[𝛽𝑆 − 𝛽𝑆∗] +
𝜎1

2

2
𝐼∗ +

𝜎2
2

2
𝐼∗[(𝑆 − 𝑆∗) + 𝑆∗]2, 

        ≤ 𝛽(𝑆 − 𝑆∗)(𝐼 − 𝐼∗) +
𝜎1

2

2
𝐼∗ + 𝐼∗𝜎2

2(𝑆 − 𝑆∗)2 + 𝐼∗𝜎2
2𝑆∗

2. 

On the other hand, we have  

             𝐿𝑉2 = (𝑆 − 𝑆∗ + 𝐼 − 𝐼∗)(𝐴 − 𝜇𝑆 − (𝜇 + 𝛼)𝐼) +
𝜎1

2

2
(𝑆 + 𝐼)2, 

                     = (𝑆 − 𝑆∗ + 𝐼 − 𝐼∗)(−𝜇(𝑆 − 𝑆∗) − (𝜇 + 𝛼)(𝐼 − 𝐼∗)) 

                                       +
𝜎1

2

2
[(𝑆 − 𝑆∗) +    (𝐼 − 𝐼∗) + (𝑆∗ + 𝐼∗) ]2, 

                     ≤ −𝜇(𝑆 − 𝑆∗)2 − (𝜇 + 𝛼)(𝐼 − 𝐼∗)2 − (2𝜇 + 𝛼)(𝑆 − 𝑆∗)(𝐼 − 𝐼∗) 

                                      +
3

2
𝜎1

2(𝑆 − 𝑆∗)2 +
3

2
𝜎1

2(𝐼 − 𝐼∗)2 +
3

2
𝜎1

2(𝑆∗ + 𝐼∗)2, 

                     = −(𝜇 −
3

2
𝜎1

2)(𝑆 − 𝑆∗)2 − (𝜇 + 𝛼 −
3

2
𝜎1

2)(𝐼 − 𝐼∗)2 

                              −(2𝜇 + 𝛼)(𝑆 − 𝑆∗)(𝐼 − 𝐼∗) + 3𝜎1
2𝑆∗

2 + 3𝜎1
2𝐼∗

2. 

 

Hence  

𝐿𝑉 ≤ −[𝜇 −
3

2
𝜎1

2 −
2𝜇+𝛼

𝛽
𝐼∗𝜎2

2](𝑆 − 𝑆∗)2 − [𝜇 + 𝛼 −
3

2
𝜎1

2](𝐼 − 𝐼∗)2 

           +[3𝜎1
2(𝑆∗

2 + 𝐼∗
2) +

(2𝜇+𝛼)𝐼∗

𝛽
(

𝜎1
2

2
+ 𝑆∗

2𝜎2
2)], 

       = −[𝜆1(𝑆 − 𝑆∗)2 + 𝜆2(𝐼 − 𝐼∗)2 − 𝜆3]. 

Finally  

𝐿𝑉(𝑆, 𝐼) < 0           𝑓𝑜𝑟  𝑎𝑙𝑙     (𝑆, 𝐼) ∈ ℝ+
2 \𝐷, 

which means that (A.2) holds. 
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According to Lemma 2.3, we conclude that system (1.2)  is ergodic and admits a unique stationary distribution.  

5. Conclusion 

In this paper, we investigated a class of stochastic SIS epidemic model with a Complex type of noises. The only 

stochastic component is due to the environmental variability, which we incoporate in the model as white noise 

about the disease transmission rate and the natural death rate. We showed that the solution of the model 1.2 has a 

unique stationary distribution when the intensity of noise is small. This distribution has the ergodic property, 

which means that the statistical behavior of the model can be known by the temporal average of the solution . 

Besides, under the stationarity condition,  the disease will prevail. 
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