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Abstract 

Drug design and discovery is a very challenging and costly process. It involves a crucial phase of drug-target 

interaction (DTIs) identification. Nevertheless, most existing methods use either binary classification to predict 

the presence of an interaction in a Drug-Target pair, or regression methods to predict the exact float-value 

representing the Binding Affinity. These latter methods are more valuable but suffer from unsatisfactory results 

despite their very sophisticated models and multiple inputs. In this paper, we present a new approach for 

predicting the strength of drug-target binding, we tackle the question as a Multi-class classification problem. 

This approach is very rational since the key points, in drug-target interaction, are to have a precise indication 

about the binding strength and to establish a ranking between drug-target pairs’ binding strengths.  Our model 

input being sequences presenting hidden patterns, we use convolutional LSTM networks, since they inherit the 

ability in discovering patterns from Convolutional networks, and learning from sequential data from recurrent 

networks. Besides the usual performance metrics, we investigate new interesting performance metrics that have 

never been explored before.  The results show that our approach is very convincing.  

Keywords:  Deep learning models for drug discovery; Drug repurposing;  Drug-target binding affinity;  

Discretization;  Multi-class classification models. 

1. Introduction 

Detecting the presence of interactions between a drug and a target is decisive in drug discovery and 

repositioning.  Nevertheless, the existing biological assays and other screening methods, remain very expensive, 

and time-consuming [1]. Consequently, computational methods have been explored to predict potential drug-

target interaction with a minimum error rate.  These methods are classified into two categories: DTI (Drug-

Target Interaction) class, and DTBA (Drug-Target-Binding-affinity) class [2].  
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DTI methods are merely interested in a binary classification model since their objective is limited to the 

detection of the presence or absence of an eventual interaction between a drug and a target without considering 

the strength of such interaction. This constitutes an unrealistic simplification of the problem. Furthermore, most 

used datasets, in this class, contain exclusively positive examples, missing values are interpreted as negative 

cases which is inaccurate [3].  In drug discovery, a drug-target binding having a weak strength is not suitable. 

Consequently, models and approaches predicting the strength of the binding between a drug and a target are of 

great importance. However, to date, DTBA prediction methods did not achieve the ultimate goal, even by using 

complicated models and multiple input forms representations for the same model.  In this paper, we present a 

novel deep learning based approach for drug-target affinities prediction. MC-DTBA (Multi-Class DTBA) is 

based on the idea that both DTI and DTBA are too drastic. They are at the two opposite ends. Our idea is to 

tackle this problem as a multi-class classification problem, where classes represent different levels of strength 

and are defined based on the binding affinities values.  This provides a ranking of drug-target pairs binding 

affinities, which constitutes the actual need. Our idea is justified by the following arguments:   

1) DTI methods are not judicious. Predicting the presence of weak interaction is misleading since in drug 

discovery such interactions are equivalent to the absence of interactions. 

2) The main objective in drug discovery is to identify the level of binding strength between a drug and a 

protein [4], to extract the highest scoring compounds, called “hits”.  An in vitro testing is applied to these hits 

resulting in leads identification. Leads are selected compounds that are filtered for supplementary testing and 

investigation. The most promising leads will be considered as drug candidates [5] 

3) Results found, so far, with DTBA methods are not very convincing even with high complexity systems 

4) Datasets, used by almost all the methods of DBTA, have different techniques to compute the affinities 

values. Furthermore, for the same dataset, there may exist many versions resulting from ad-hoc manipulations. 

The Kiba dataset [42] is an example of such ‘unjustified’ manipulations [6]. This makes binding values prone to 

errors or at the best not very accurate.   

5) Given the level of randomness and the huge number of exogenous parameters that intervene in the drug-

target binding occurrence and quality, it is more needed to represent the strength with a level or a “ranking” 

rather than with a very precise float-value. 

A. Related Works  

As we said before, we are not aware of any previous work tackling the drug-target interaction prediction 

problem in a multi-class classification fashion. Hence, in the following, we will present some previous work in 

DTBA, because, their objective is closer to that of our approach. Few methods are focusing on DTBA 

prediction.   These methods are generally data-driven and usually use machine learning techniques for 

regression rather than binary classification.  Machine learning methods such as Random Forest (RF) algorithm 

have been used as an effective substitute for scoring functions [7-9]. However, RF-score was unsuccessful in 

virtual screening and docking tests because the oversimplification of the drug-target complex description causes 

a significant loss of information [10]. SimBoost [11] and KronRLS [12] are two state-of-the-art methods for 

DTBA prediction. SimBoost is based on features construction, it exploits drugs and targets similarity matrices 

[11].  KronRLS is based on Regularized Least Squares [12]. These two methods can predict continuous values 
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representing binding affinity scores, and binarized values indicating the presence or absence of interaction. 

However, the drawback of these methods and other similar ones, is that they are either based on similarities or 

require expert knowledge. Accordingly, this category of methods requires the task of “feature engineering” in 

their process. This phase is necessary for all machine learning approaches and constitutes one of the supremacy 

points of Deep Learning (DL) over machine learning techniques. Deep neural networks can automatically 

extract important features from the raw input data. They are able of detecting hidden patterns, associating low-

level features to high-level features, and capturing complex nonlinear relationships in a dataset [13]. Deep 

learning has witnessed unprecedented growth in popularity in recent years. It has seen tremendous successful 

applications in image processing and computer vision [15,16], speech recognition, natural language processing 

[17-19].  Stimulated by their remarkable success, deep learning-based techniques are now being investigated in 

many other complex domains, including bioinformatics such as in genomics studies [20-22] and quantitative-

structure activity relationship (QSAR) studies in drug discovery [23,24]. The most valuable advantage of deep 

learning approaches is that they don’t require a prior feature extraction phase, they can extract automatically 

latent features of the raw data by non-linear transformations in each layer [25] and thus they excel in learning 

hidden patterns in the data. Consequently, DL methods overcome the limitations of the previously applied 

techniques. DL algorithms for DTBA prediction, usually show the best performance compared to other ML and 

conventional algorithms. We can categorize DL-based algorithms for DTBA prediction, regarding two main 

aspects. The first is the input data representation, especially, drug features. Some examples are the Simplified 

Molecular Input Line Entry System: SMILES [26], Ligand Maximum Common Substructure (LMCS), and 

Extended Connectivity Fingerprint (ECFP) [27]. Some methods use a combination of these features. The second 

aspect is the architecture of the model that is defined using various neural network (NN) types. Usually, the 

representation of the input data for the drug and target starts the DTBA prediction, next to this, various NN 

types are applied to learn independently their features. The obtained features are then merged and fed to a 

neural network for the prediction task. Stacked auto-encoder models based on Recurrent Neural Networks 

(RNNs) and Convolutional Neural Networks (CNNs) were among the earliest deep-learning approaches for 

DTBA prediction [33]. The main objective of these models was to define real-valued vector forms for chemical 

and genomic representation. [28-32]. CNN networks have a well-known reputation for pattern recognition, 

especially when dealing with multi-dimensional structures. Consequently, DTBA prediction methods based on 

CNN, have also been investigated for 3D learning from drug-target complexes structures [33-35]. DeepDTA, 

introduced in [33] is based on Convolutional Neural Network (CNN) architecture that includes blocks of 

convolutional layers that learn latent features of both drug and target, followed by pooling layers reducing the 

size.  DeepDTA performance was assessed on two datasets. In an attempt of enhancing DeepDTA performance, 

the same authors developed two other models investigating the use of various input representations with 

different models. The first model is called WideDTA [34]. Like its predecessor, WideDTA is also a CNN-based 

model. It attempts to improve the performance of DeepDTA by considering more input representations. The 

WideDTA investigated multiple inputs. For drugs, it used a combination of ligand SMILES and Ligand 

Maximum Common Substructure (LMCS). Whereas for proteins, it used Amino-acid sequences along with 

Protein Domains and Motifs (PDM). Furthermore, all the sequences are represented as a set of words instead of 

residue sequences. The second model is DeepAffinity [35]. It is an approach based on seq2seq model. 

DeepAffinity uses the SMILES representation for drugs and the structural property sequence (SPS) for protein 
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representation.  Drug SMILES and protein SPS are both encoded into embedding representations and provided 

to a seq2seq model. PADME [6] is another DL-based approach. It uses drug and target features and fingerprints 

to predict the binding affinity values. There are two versions of PADME. One called PADME-ECFP uses the 

Extended-Connectivity Fingerprint [36] as input representation for drugs. The second version called PADME-

GraphConv is based on convolutional graphs [37]. The two versions use the same protein descriptors [38]. As 

mentioned by the authors of the paper presenting PADME, a surprising result is that sequence representations 

outperformed graph-based ones, which was not expected. The use of sequences for drug-target prediction was 

also assessed in much other research and has proven to be promising.  

B. Contributions 

In this paper, we propose a new DL-based approach for drug-target affinities prediction. Our method uses 

SMILES (Simplified Molecular Input Line Entry System) representation for compounds. and Amino-acid 

sequence representation for proteins. We use the same datasets as DTBA approaches. First, based on the values 

distribution of the used datasets, our method uses the Elbow method to define the number of appropriate 

clusters for each dataset. Then, the found number of clusters NC, is used with the Kmeans clustering algorithm 

to partition the dataset into NC distinct non-overlapping clusters where each data point belongs to a unique 

cluster representing a class in the Multiclass model. In this way, our method overcomes the limitations of both 

DTI and DBTA existing methods by predicting interaction strength levels instead of binary class labels, and 

instead of a float-value.    

We use two CONVLSTM2D blocks that learn drug and protein features and attempt to extract their patterns and 

sequential relationships. The learned representations are concatenated and fed to a fully connected layer block 

to predict the drug-target binding strength level. Using CONVLSTM2D layers is justified by the need of both 

capturing local residue patterns and learning from sequential data while ensuring robustness against the 

problems of long-term dependency. The first capability is provided by CNNs while the second is a well-known 

quality of LSTMs.  We conducted extensive experiments with usual and new evaluation metrics. The results 

show that the proposed model is an effective approach for drug target binding affinity prediction. The 

subsequent sections of this paper are organized as follows. The Material and Method section presents the 

datasets that we used, compound and protein representations, and the discretization method. It also introduces 

the network architecture. The Experiment section describes the experiments conducted. It introduces the 

baseline method, performance metrics, experimental design, and the experimental results and clarifies some 

implementation and design choices.  Finally, the last section concludes the paper.  

 2. Materials And Methods 

A. Datasets  

For DTI binary prediction, the most popular benchmark datasets are Yamanishi datasets [39]. However, they 

cannot be used for DTBA prediction models, since they don’t contain actual binding affinity values that are 

needed to train DTBA models to predict the strength of the binding between drugs and their targets. Only a few 
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benchmark datasets have been used to develop in silico DTBA prediction methods [1].  The most used datasets 

for these models are the three large-scale benchmark datasets: Davis, Metz, and KIBA (Kinase Inhibitor 

BioActivity). These datasets are introduced in [40-42]. All three datasets are large scale biochemical selectivity 

assays of the kinase inhibitors [1]. The Davis dataset contains selectivity assays of the kinase protein family and 

the relevant inhibitors with their respective dissociation constant (Kd) values. It contains interactions of 442 

proteins and 68 ligands. In the three datasets, the binding affinity is computed differently. In the Davis dataset, 

the Kd value is directly provided as a measure of binding affinity. KIBA score represents a continuous value of 

the binding affinity that was calculated utilizing Kd, Ki, and IC50 scores [42]. The KIBA dataset initially 

contained 467 targets and 52 498 drugs, it was filtered in [11] to include only drugs and targets with at least 10 

interactions.  The obtained final version contains a total of 229 unique proteins and 2111 unique drugs. The 

higher KIBA score indicates a lower binding affinity.  The Metz dataset provides the Ki as a measure of binding 

affinity. A small value of Ki indicates a strong binding affinity between a drug and its target [41].  However, 

these datasets have been curated more than once [12]. Consequently, there exists more than one version of 

them. In this paper, we use the same version used in PADME [6]. Table 1 summarizes the statistics for these 

three benchmark datasets. 

B. Discretization  

The first step of our method is the discretization process. It is the mapping of the original regression problem 

into a classification one.  In [43,44], it has been clearly shown that “it is possible to obtain excellent predictive 

results by transforming regression problems into classification ones. Mapping regression into a classification is 

a kind of pre-processing technique that enables the use of classification algorithms on regression problems.” 

[43,44]. This could be justified by the fact that due to infinite degrees of freedom, continuous features have a 

reduced chance of correlating with the target variable. Furthermore, discretizing a model has the effect of 

reducing significantly the impact of   noise, which is the small fluctuation in the data.  Using discretization 

requires the creation of a dataset with discrete classes rather than continuous values.  Two families of 

approaches are usually used for performing this task.  The first category includes unsupervised methods:  Equal-

Width; Equal-Frequency and K-Means. the second one contains supervised methods like Decision Trees. In our 

work, we used the K-Mean discretization method. It consists in applying the K-Means clustering algorithm to 

the continuous values to divide them into discrete clusters each one having a centroid.  Before applying the K-

means method, we used the Elbow method to investigate the optimal number of classes for each dataset, we 

searched for these values in the range (1,15), to ensure a flawless coverage. The graphs representing the inertia 

based on the clusters number are given in Figure 1 column (a). The optimal number of clusters, for each dataset 

is determined by selecting the value of k at the “elbow”, that is, the point after which the inertia value starts a 

linear decreasing.  We notice that for all the datasets, the optimal value of clusters was 6. The obtained clusters 

with their centroids are given in Figure 1 column (b).  
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Table I: Datasets Summary. 

Dataset Drugs Proteins Known  DTIs 

Davis 68 442 30056 

Kiba 2116 229 118254 

Metz 1412   156 35259 

 

Figure 1: Discretization process:  (a): The Elbow   (b):Clusters Centroids. 

C. Drug and Target Representation 

 MC-DTBA uses SMILES for drug representation and amino-acid protein sequences for proteins. The 

Simplified Molecular-Input Line-Entry System (SMILES) is a specification in the form of a line notation that 

uses printable characters for describing the structure of chemical elements: molecules and reactions [26]. 

SMILES is a true language, although with a small vocabulary size (atom and bond symbols) and only a few 

grammar rules. In our model, SMILES are represented by a one-hot encoding. Protein sequences are encoded 

similarly. The lengths of SMILES and protein sequences are variable, consequently, for each dataset, we 

decided on a maximal length.  The sequences that are shorter than the maximum length are 0-post-padded, 

while longer sequences are truncated. For all the datasets, we opted for a length Accordingly to the distribution 

of SMILES and protein sequences lengths, we opted for the maximal length of 100 for SMILES and 1200 for 

protein sequences.  
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D. Proposed Model 

MC-DTBA is based on convolutional recurrent neural networks. CONVLSTM2D is a special architecture that 

combines the gating of LSTM with 2D convolutions. In these layers, input transformations and recurrent 

transformations are both convolutional. Convolutional networks are famous for their ability in discovering 

patterns and LSTMs are a class of recurrent neural networks that excel in learning from sequential data while 

avoiding the problems of long-term dependency since they encompass memory blocks allowing efficient long 

sequences learning. These characteristics justify our use of CONVLSTM2 in DBTA prediction both drugs and 

targets are represented by sequences presenting patterns.  Therefore, we opted for this type of layers.  First a 

one-hot encoding is applied to each sequence. Then, an embedding layer is used to represent sequences 

characters with high-dimensional (128-dimensional) dense vectors. The resulting sequences are deeply explored 

by two convolutional recurrent blocks, each one composed of three CONVLSTM2D layers to capture the 

presence of discriminative features.  These layers are directly connected without pooling which allows 

preserving the entire information, a pooling is performed at the end of the block, to reduce the output size of the 

previous layers and provide a generalization of the learned features. The output of the convolutional recurrent 

blocks are concatenated.   To conclude, the final prediction is performed, in a standard way, by using fully 

connected layers after the feature extraction. All the hidden layers are activated by the “relu” activation 

function.  The output layer was activated with the softmax () function since the problem is framed as a 

multiclass classification problem. The whole neural network model was implemented with Keras [45].  The 

most powerful feature of CONVLSTM2D models is their ability to capture the local dependencies with the help 

of filters and at the same time find out dependencies between distant sequence locations. The number and size 

of filters in a CONVLSTM2D are among the hyperparameters that have a high impact on the model 

performance. Thus, increasing the number and the size of filters likely increases the ability of the model in 

patterns recognizing patterns [46]. Stacking many CONVLSTM2D layers allows the automatic detection of 

more abstracted features. The fully connected block is constituted of three Dense layers. The first two ones 

have, each one, 1024 nodes the last one contains 512 nodes. To prevent overfitting, we make extensive use of 

Dropout with various proportions. Finally, the prediction layer contains one node and is activated with the 

‘sigmoid’ activation function. For regularization, we used Dropout and Batch Normalization techniques [47] to 

avoid overfitting. The activation functions used for fully connected layers are all Rectified Linear Units (ReLU) 

that have been widely used in deep learning studies [25].  We used categorical cross-entropy as a loss function. 

We used a mini-batch size of 128 to update the weights of the network. The learning was completed with 100 

epochs. We utilize the Adadelta optimizer [47]as the optimization algorithm to train the networks. To have 

additional control on the learning rate, we use a Callback for initializing the learning rate and automatically 

tuning it during the training and reduce its value based on the monitored parameter, the initial learning rate 

value was set to 0.01, and the minimum value was set to 0. 0001. The structure of the network is shown in 

Figure 2. MC-DTBA performance was assessed for the three datasets.   

3. Experiments 

In this section, we describe the experiments we conducted for our proposed model, which is a deep learning 

multi-class model for drug-target binding affinity prediction method taking advantage of great performances of 
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both recurrent and convolutional networks.   

E. Baseline Method 

There are no previous methods that could be used directly as a baseline since all the previous approaches are 

either binary classification or regression models. However, to assess the performance of our method, and 

compare it with existing models, we have selected one state of the art approach which is DeepDTA, for which 

we have transformed the last layer in such a way to output a set of classes instead of a unique value. We 

selected DeepDTA as a baseline for many reasons:  

1) DeepDTA is a state of the art method that is usually used to assess methods against 

2) DeepDTA model has been trained on two datasets that are used in our study, this make the performance 

comparison more equitable. 

3) Contrary to other models, both our approach and DeepDTA are using SMILES and protein sequences as 

inputs. 

DeepDTA uses two distinct stacked CNN blocks, one for protein sequences and one for SMILES to predict 

affinity between target protein and drug.  We used DeepDTA with the same code and optimized 

hyperparameters provided in their paper [33]. The unique modification we performed, was in the last layer to 

make it predict a class rather than a float-value. This method is followed by many approaches to perform 

comparisons.   

F. Evaluation Metrics   

Categorical Accuracy is the usual performance metric in a multi-class classification problem. However, many 

additional metrics might be of great interest for the study of drug-target bindings. These metrics have not been 

used in the previous papers because of their problem framing. In fact, for the models that specify the problem as 

regression the natural metrics are various forms of  
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Figure 2: Model Architecture. 

errors: mean square error, mean average error, and others. On the other side, the models where the problem is 

framed as binary classification rely on the usual metrics in this domain which are: accuracy, precision, recall, 

AUC and other similar metrics. To assess the performance of our model, we have selected four metrics, the first 

being the usual categorical accuracy. We used three other metrics that are suitable for our study:   concordance 

index [48], TopK-Categorical-Accuracy, and Hinge-Categorical metric [49]. In the subsequent, we will 

introduce briefly each of these metrics and explain its appropriateness for our work, and when necessary, how 

we implemented it in our model.   

1) Concordance index   

The concordance index or C-index (or CI) can be considered as a generalization of the area under the ROC 

curve (AUC) that is usually used in binary classification. It represents the global assessment of the model 

discrimination power: this is the model’s ability to correctly provide a reliable ranking of the drug-target pairs. 

The concordance index of a set of data considers each data pair and calculates the probability that the order of 

the predicted label values is the same as the order of the true label values. As shown in Figure 3, the prediction 

fi of the higher affinity yi is greater than the prediction fj of the smaller affinity value yj[12]. When the main 

objective is the prediction of the labels relative order rather than their values, the CI measure is a suitable 

performance metric. For example, in DTI investigations, it is desirable to have an estimation of the interaction 
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likelihood of a given drug (or target) with all the targets and to rank accordingly the targets (or drugs) [12].  The 

CI is the proportion of the concordant pairs over the total number of pairs. Its formula is given in Figure 3 

 

 

 

Figure 3: Concordance Index. 

Z is a normalization constant representing the number of pairs with different labels, and h(u) is the step 

function. The values of the CI range between 0.5 and 1.0 [12] Ties in the predictions are counted as half 

concordant pairs. Random predictions have an average concordance index of 0.5. Hence, a model without any 

learning skills has a mean concordance index of 0.5. The maximal value of CI is 1.0, it corresponds to the 

perfect order of predictions regardless of the quality of the prediction accuracy, as the concordance index is 

interested exclusively in the order of the predictions, it does not give any insight on the quality of the 

predictions themselves. Thus, for instance, it will be equal to the maximal value 1 if the order is correct even if 

the predictions are inaccurate. CI is typically used with continuous values; this is not the case of our predictions 

since they are categorical classes. However, our classes were computed from continuous affinities values in 

such a way that preserves the order of affinity strengths. This has made it possible to evaluate CI by using the 

values corresponding to the obtained predictions. 

2) Categorical Hinge metric: maximum-margin classification 

Categorical Hinge, or multiclass Hinge, was introduced by researchers Weston and Watkins [49]. It helps to 

generate decision boundaries between classes. It attempts to maximize the decision boundaries between groups 

that must be discriminated against in machine learning problems. In that way, it is comparable to how Support 

Vector Machines work, since both are interested in maximizing the margin between classes. During the training 

phase, the Hinge loss finds the minimal boundaries that allow discriminating samples of the same class from 

samples of different ones. In other words, it finds the classification boundaries that is the minimum of the 

quantity in Figure 4. Several different variations of multiclass Hinge have been proposed [49]. We used the 

version implemented by Keras which is Weston and Watkins version. it is described by the formula in Figure 3.  

 

 

Figure 4: Categorical Hinge metric. 

              1            if   x>0 

h(x) =    0.5         if   x=0   

             x=0         if   x <0 
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Where t is the target class, y is the predicted class, wt and wy are the model parameters and x is the input. It is an 

appropriate metric for our work because it gives an idea about how to discriminate drug-target pairs 

interactions; which might help to understand the subtlety behind the drug-target association.  

3) Top K Categorical Accuracy 

The Top-K-categorical accuracy is used in multiclass classification models, to compute how often targets are in 

the top K predictions. K is a given parameter that represents the number of top elements to look at for 

computing accuracy. Top K Categorical Accuracy calculates the percentage of data points for which the targets 

are in the top K predictions. For each data, predictions are ranked in the descending order of probability values. 

If the rank of predictions corresponding to target is less than or equal to K, it is considered accurate. The 

division of the number of records accurately predicted by the total number of records is used to compute the 

TopK Categorical Accuracy. It is a suitable metric for our study since it allows us to check if the target label is 

one of the K top predictions. In our paper, we used the value K=2, which corresponds to the second most 

precise model accuracy, the first one being the categorical-accuracy. Thus, in this work, we utilized Categorical 

accuracy, Concordance Index, TopK-categorical accuracy, and Hinge-Categorical to measure the performance 

of the proposed model and compared it with the current state-of-art methods that we chose as our baseline, 

namely, DeepDTA [33]. 

G. Experimental Design  

To assess MC-DTBA performance, we used cross-validation (CV), which is the conventional approach in 

recent researches. This allows a more comprehensive coverage of the complete datasets, which provides a more 

accurate evaluation of the model's performance. As it is the usual tradition in previous related works, the 

number of folds was set to 5.  CV parameters can have an impact on accuracy and make the evaluation results 

imprecise. In [ 12], the authors introduced three different CV scenarios that make the performance evaluation 

more accurate and realistic. One can split the input drug-target pairs data by taking into consideration various 

constraints.   Each resulting split defines a given scenario. We followed the same idea, by considering three 

main ways to split the input data: 

1) Scenario 1 (Sc1) 

 Random drug-target pair. This corresponds to the standard k-fold CV that splits the data into k-folds randomly 

and keeps one of these folds for testing.  

2) Scenario 2 (Sc2) 

This is the case where drugs in the test fold are absent from the training fold. This corresponds to considering a 

new drug since the drug is missing from all the training data. This case is also called: cold-drug-splitting in 

some previous studies. 
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3) Scenario 3 (Sc3) 

 This is related to the situation where all the targets in the test fold are absent from the training fold. This 

corresponds to considering a new target, which means the target is missing from all the training data. It is also 

called cold-target-splitting. 

For every dataset, we performed the three types of CV splitting and for every CV splitting scheme, we 

evaluated the prediction performance. Deep learning models' performance depends highly on various 

hyperparameters like learning rate, activation functions, optimizer, and other parameters.  As explained before, 

for the learning rate, we opted for dynamic tuning by using a Keras Callback that starts with an initial value of 

the learning rate, and reduces it dynamically during the training when the monitored loss value is stagnant, 

meaning that the model is not improving. Additionally, we considered two hyper-parameters the number and 

the size of the filters for each layer in the convolutional LSTM block. The hyperparameters combination 

providing the best validation accuracy was selected as the best combination.  Overfitting is a common 

problematic behavior of deep learning models that have been targeted by many researchers. This has led to the 

apparition of various techniques, among which dropout and batch-normalization are the most used methods. 

Dropout consists of hiding randomly a given proportion of nodes during the training process. This allows a 

better generalization of the model by preventing it to be too dependent on training data. In our model, we used 

dropout with various percentages in almost all the layers. We included a Batch-normalization in many positions 

of our model since it is usually recommended before and after the convolutional process. We also penalized the 

loss function with regularization L2-norm [47] Finally, we updated the weights using the Adadelta optimizer 

with a penalized loss to give a generalized prediction for the model. Embedding vector values are randomly 

initialized by the glorot initializer, which imposes normal distribution of weights and variance of output 

following variance of input. The model was constructed using tensorflow. keras [50]. 

H. Results 

This section presents our experimental results. We have assessed our model for the three datasets, in three 

possible scenarios: Sc1, Sc2, and Sc3. In Sc1, both drugs and targets have been seen in the training. For Sc2, the 

only drug has been seen in training.  Whereas, for Sc3, the only target has been seen in the training. The tables 

from II to IV summarize our results and those of DeepDTA. We note that MC-DTBA results are very 

convincing and it greatly outperforms DeepDTA across all datasets and scenarios and for all evaluation metrics. 

The high value of Topkcategorical accuracy with the selected k=2 for all the experiments, shows clearly the 

high performance of the model since this value indicates the accuracy of the model for the top two predicted  

classes.  Hinge values (the lesser the better) reflect also the supremacy of MC-DTBA on DeepDTA. 

Additionally, from Tables II to IV we notice that for both methods, globally the results for the Kiba dataset are 

better than other datasets and scenario Sc2 is also generally better than scenario Sc3.  The performance of the 

first scenario, corresponding to the learning of all drugs and targets, is typically better than that of scenarios 2 

and 3, which describe respectively, testing on new drugs and new targets. This could be easily justified and, was 

in some way predictable.  
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Table Ii: Results For Davis Dataset. 

Dataset Scenario Metrics MC-DTBA DeepDTA 

 
 
 
 
 
 

DAVIS 
 
 
 
 
 
 

 
         1 

Accuracy 0.8594 0.7675 

TopKCategorical 
Accuracy 

0.9375 0.8972 

CI 0.8588 0.6654 

Hinge 0.3463 0.4634 

 
2 

 
     

Accuracy 0.8575 0.7622 

TopKCategorical 
Accuracy 

0.9269 0.8533 

CI 0.7410 0.6473 

Hinge 0.3902 

 

 

 

 

0.4774 

 
3 

Accuracy 0.8379 0.7679 

TopKCategorical 
Accuracy 

0.9208 0.8465 

CI 0.7354 0.6379 

Hinge 0.4103 0.4803 

Table Iii: Results For Kiba Dataset. 

Dataset Scenario Metrics MC-DTBA DeepDTA 

 
 
 
 
 
 

KIBA 
 
 
 
 
 
 

 
         1 

Accuracy 0.8694   

 
0.8308 

. 
TopKCategorical 
Accuracy 

0.9928  

 
0.9483 

 
CI 0.8467  

 
0.8136 

. 
Hinge 0.3692 

 
0.4870 

 
 

2 
 
     

Accuracy 0.8575 0.8174 

TopKCategorical 
Accuracy 

0.9731 0.9420 

CI 0.7510 0.7246 

Hinge 0.3902 

 

 

 

 

0.4979 

 
3 

Accuracy 0.8370 0.7959 

TopKCategorical 
Accuracy 

0.9508 0.903 

CI 0.7476 0.7263 

Hinge 0.4022 0.4547 
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Table Iv: Results For Metz Dataset. 

Dataset Scenario Metrics MC-DTBA DeepDTA 

 

 

 

 

 

 

METZ 

 

 

 

 

 

 

         1 

Accuracy 0.8491 0.7632 

TopKCategorical 
Accuracy 

0.9104 0.8650 

CI 0.7773 

 

0.6404 

Hinge 0.3632 

 

0.4694 

 

2 

 

     

Accuracy 0.8434 0.7675 

TopKCategorical 
Accuracy 

0.9069 0.8542 

CI 0.7011 0.6530 

Hinge 0.4230 

 

 

 

 

0.4802 

 

3 

Accuracy 0.8379 0.7468 

TopKCategorical 
Accuracy 

0.8963 0.8297 

CI 0.7005 0.6174 

Hinge 0.4176 0.5030 

4. Conclusion 

To tackle the drug-target binding affinity problem more effectively, we propose a deep learning-based approach 

for multi-class DTBA prediction. First, we performed a discretization procedure that starts by applying the 

Elbow method to define the appropriate number of clusters, then the Kmeans algorithm is used to divide the 

datasets in clusters representing target classes. We represent both drugs and proteins with sequences. Then we 

use convolutional recurrent Neural Networks (CONVLSTM2D) to learn representations from the drug and 

target sequences. We compare the performance of the proposed model with DeepDTA a state of the art method 

in DTBA prediction. We perform our experiments on three commonly used datasets, Davis, Kiba, and Metz. 

Our results showed the relevance of our method. Furthermore, the use of stacked CONVLSTM2D to learn 

representations of proteins and drug sequences is appropriate.   This could be an indication that compound and 

amino-acid sequences require a structure that can handle simultaneously, their ordered relationships along with 

their hidden patterns, which the CONVLSTM architecture accomplished successfully. Our results showed also 

that the use of sophisticated forms for the input is not sufficient to describe drug-protein interactions. Hence, 

using sequence information as the input makes the model simple and generally applicable. Predicting one class 

of activity among several classes instead of a float-value or a binary classification also makes it desirable for 

identifying the level of binding strength between a drug and a protein, which is the main objective for drug 

discovery, especially in the candidate selection stage.  
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