International Journal of Applied Sciences: Current and Future Research Trends (IJASCFRT)

ISSN (Print), ISSN (Online)

© International Scientific Research and Researchers Association

https://ijascfrtjournal.isrra.org/index.php/Applied_Sciences_Journal

History, Adverse Effect and Clean Up Strategies of Oil Spillage

Abdulhalim Musa Abubakar^{a*}, Musa Alhassan^b

^aDepartment of Chemical Engineering, Faculty of Engineering, Modibbo Adama University (MAU), P.M.B 2076, Yola, Adamawa State, Nigeria

^bDepartment of Chemical Engineering, Faculty of Engineering, University of Maiduguri (UNIMAID), P.M.B 1069, Maiduguri, Borno State, Nigeria ^aEmail: abdulhalim@mautech.edu.ng

^bEmail: musaalhassan@ymail.com

Abstract

Over 178 billion liters of oil had been lost to the environment over the past 120 years, majorly as a result of improper handling, sabotage and accidents. Estimated cost of this lost is 81 billion US dollars. From the highest, locations most impacted by the spills are Kuwait, United States, Persian Gulf, Mexico and Nigeria. The effect is felt as a whole by living organisms (birds, livestock, plants, soil micro-organisms, fish, intertidal fauna, dwarf seahorse, humans etc) and their habitats. This paper investigates, clean up techniques like boom, skimmers, berms, dispersants, in-situ burning, sorbents, bioremediation and high-pressure hosing, noting that none of these is effective and search has to continue towards finding a more effective clean up approach. It can be concluded that the best way to tackle the menace of oil spillage is prevention.

Keywords: Oil spill; Clean up; Oil recovery; Oil Tankers; List of oil spills.

1. Introduction

Oil is one of the main drivers for the growth of modern economies because of its multifaceted use in transport, energy and manufacturing [1]. Levine (2002) estimated that 3.65 billion gallons of oil per day is consumed worldwide. Contaminated soils often occur as a result of leaking underground storage tanks, vandalization of pipeline, leakage of surface storage tanks, indiscriminate disposal of oil on the grounds on/off loading of the oil in various refineries/processing plants and depots [2,3]. Natural oil spills can occur through petroleum seep, which occurs due to activity inside the earth causing the escape of liquid or gaseous hydrocarbons to the earth's surface [4].

^{*} Corresponding author.

When a spill event occurs, one of the most important predictors of impact is its location. Spills closer to shore and human populations have greater economic impacts and are more expensive to clean [5]. Effects on sea shores tend to be caused by organisms becoming coated or smothered by oil, as depicted in Fig. 6. This inhibits or prevents movement, excludes oxygen and clogs respiratory surfaces, excludes light required by seaweeds, phytoplankton and corals, and penetrates the feathers of seabirds, affecting their buoyancy and water repelling and thermal insulating properties [6].

The oil spill clean-up and recovery techniques (as in Fig. 8-10) are challenging and usually involve complex mechanical, chemical, and biological methods. Usually, mechanical removal of free oil is utilized as an effective strategy for clean-up in aquatic and terrestrial environments; however, they are expensive and need specialized personnel and equipment [7]. Three different types of equipment—booms, skimmers, and sorbents—are commonly used to recover oil from the surface [8]. Towards ensuring an environmentally friendly approach of major oil spills, Scientists have developed a new type of nanosponge that can absorb more than a hundred times its own weight in oil and which can be reused over and over again [9].

2. Oil Spillage across the Globe

As oil transportation worldwide continues to increase, many communities are at risk of oil spill disasters and must anticipate and prepare for them [5]. Zhang and his colleagues (2015) finds that 90% of oil is transported via sea where Galierikova and his colleagues (2020) asserts that Asia-Pacific, Europe and North America consumes this product the most; and this oil comes from Middle East and the former Soviet Union where its concentration is highest.

Figure 1: Oil Leaking from a Barge off the North Coast of Puerto Rico [10]

The world have recorded major spills of damaging effects continuing from 1900s till this present time. Those spills are either onshore or offshore (Figure 1) and are measured in volumetric units. It is established by [11], that 1 tons of crude oil is equivalent to 7.33 barrels (= 307.86 US Gallons or 1165 litres). A list of spills from 1000 tonnes (approximately 7000 barrels) of crude oil and above that occurred across the globe is recorded in Table 1:

Rank Date Location **Spill Name** Size of Spill **US Gallons** Litres Barrels Kuwait Kuwaiti Oil Fires 1.58936E+11 999999999.8 Kuwait Kuwaiti Oil Lakes United States Lakeview Gusher Persian Gulf **Gulf War Oil Spill** United States **Deepwater Horizon** United States **Taylor Energy** Mexico Ixtoc I Oil Well 1976-1996 Nigeria Niger Delta 99517743.01 376593810.9 2369470.07 Trinidad & Tobago Atlantic Empress Uzbekistan **Fergana Valley** Angola **ABT Summer** Persian Gulf Nowruz Field Platform South Africa **Castillo De Bellver** Russia Komi Oil Pipeline 77507757.18 1845422.79 France Amoco Cadiz Italy Haven **Production Well D-103** Libya China Sanchi Oil Tanker Collision With CF Crystal Canada Odyssev **Torrey Canyon** United Kingdom

Table 1: Maximum Oil Spill Volume across the Globe from 1900-2021

21	1972	Oman	Sea Star	35403900	133975000	842950
22	2018	China	Sanchi	34788180	131645000	828290
23	1971	Belgium	Texaco Denmark	32941020	124655000	784310
24	1980	Greece	Irenes Serenade	30786000	116500000	733000
25	1976	Spain	Urquiola	30786000	116500000	733000
26	1940	United States	Greenpoint, Brooklyn	29999999.56	113525626.9	714285.7037
27	2010	Nigeria	Exxonmobil	29400630	111257500	700015
28	1977	Hawaii	Hawaiian Patroit	29246700	110675000	696350
29	1979	Turkey	Independenta	29246700	110675000	696350
30	2010	China	Xingang Port Oil Spill	27707400	104850000	659700
31	1975	Portugal	Jakob Maersk	27091680	102520000	645040
32	1993	United Kingdom	Braer	26168100	99025000	623050
33	1992	Spain	Aegean Sea	22781640	86210000	542420
34	1992	Mozambique	Katina P	22165920	83880000	527760
35	1996	United Kingdom	Sea Empress	22165920	83880000	527760
36	1985	Iran	Nova	21550200	81550000	513100
37	1989	Morocco	Khark 5	21550200	81550000	513100
38	1979	Ireland	Betelgeuse	19703040	74560000	469120
39	2002	Spain	Prestige	19395180	73395000	461790
40	1975	Puerto Rico	Epic Colocotronis Spill	18779460	71065000	447130
41	1970	Sweden	Othello	18471600	69900000	439800
42	1974	Chile	Vlcc Metula	15700860	59415000	373830
43	1968	South Africa	World Glory	14161560	53590000	337180
44	2012	Venezuela	Guarapiche River	12622260	47765000	300530
45	1976	Colombia	Saint Peter	11715920.16	44335240	278950.48

46	2020	United States	2020 Colonial Pipeline Gasoline Spill	11698680	44270000	278540
47	1989	United States	Exxon Valdez	11390820	43105000	271210
48	1975	United States	Corinthos	11082960	41940000	263880
49	1977	Taiwan	Borag	10467240	39610000	249220
50	1971	United States	Texaco Oklahoma	9697590	36697500	230895
51	1077	South Africa	Venpet-Venoil Collision	9389730	35532500	223565
52	2009	Australia	Montara Oil Spill	9235800	34950000	219900
53	1973	Chile	Napier	9235800	34950000	219900
54	2006	Lebanon	Jiyeh Power Station Oil Spill	9235800	34950000	219900
55	2003	Pakistan	Tasman Spirit	9235800	34950000	219900
56	1954-1994	United States	Guadalupe Oil Field	8927940	33785000	212570
57	1976	United States	Argo Merchant	8620080	32620000	205240
58	1977	Norway	Ekofisko Oil Field	8496936	32154000	202308
59	1971	South Africa	Wafra	8312220	31455000	197910
60	1958	United States	African Queen	6465060	24465000	153930
61	1975	Brazil	Tarik Ibn Ziyad	6157200	23300000	146600
62	1967	United States	R.C. Stoner	6157200	23300000	146600
63	2020	Russia	Norilsk Diesel Fuel Spill	5387550	20387500	128275
64	1991	Australia	Kirki	5319820.8	20131200	126662.4
65	1981	Soviet Union	Globe Asimi	5233620	19805000	124610
66	1990	United States	Mega Borg Oil Spill	5079997.86	19223665	120952.33
67	1973	Sweden	Jawachta	4925760	18640000	117280
68	1994	United Arab Emirates	Seki	4894974	18523500	116547
69	1962	United States	Mississippi River Oil Spill (1962-1963)	4617900	17475000	109950
70	1969	United States	Santa Barbara	4310040	16310000	102620

71	1980	France	Tanio Oil Spill	4156110	15727500	98955
72	1978	Chile	Cabo Tamar	3848250	14562500	91625
73	1968	Puerto Rico	Ocean Eagle	3848250	14562500	91625
74	2002	Yemen	Limburg (Bombing)	3755892	14213000	89426
75	2005	United States	Bass Enterprises Oil Spill (Hurricane	3694320	13980000	
			Katrina)			87960
76	2007	South Korea	Hebei Spirit	3386460	12815000	80630
77	2007	South Korea	Korea Oil Spill	3324888	12582000	79164
78	1970	Canada	SS Arrow	3180193.8	12034450	75718.9
79	1978	Brazil	Brazilian Marina	3090606.54	11695435	73585.87
80	1989	South Africa	Pacificos	3078600	11650000	73300
81	1972	South Africa	Oswego-Guardian/Texanita Collision	3078600	11650000	73300
82	1988	United States	Ashland Oil Spill	3078600	11650000	73300
83	2001	Nigeria	Shell Ogbodo	2924670	11067500	69635
84	1984	United States	Alvenus	2819997.6	10671400	67142.8
85	1937	United States	SS Frank H. Buck/ SS President	2730718.2	10333550	
			Coolidge Collision			65017.1
86	2008	United States	2008 New Orleans Oil Spill	2709168	10252000	64504
87	1979	United States	Burmah Agate	2598338.4	9832600	61865.2
88	1907	United Kingdom	Thomas W. Lawson	2436000.743	9218283.85	58000.0177
89	1987	Chile	Cabo Pilar	2308950	8737500	54975
90	2006	United States	Citgo Refinery	2001090	7572500	47645
91	1997	Japan	Nakhodka	1921046.4	7269600	45739.2
92	1980	Czechoslovakia	Druzhbia Pipeline	1847160	6990000	43980
93	2011	Nigeria	Niger Delta	1679992.02	6357405	39999.81

94	1998	Nigeria	Mobil Nigeria Oil Spill	1679992.02	6357405	39999.81
95	1973	Puerto Rico	S.S. Zoe Colocotronis Spill	1591636.2	6023050	37896.1
96	1968	Bahamas	General Colocotronis	1553769.42	5879755	36994.51
97	2013	Canada	Lac-Megantic Derailment	1486963.8	5626950	35403.9
98	1984	United States	Puerto Rican	1470031.5	5562875	35000.75
99	2014	Israel	2014 Israeli Oil Spill	1323798	5009500	31519
100	2020	Mauritius	2020 Pointe D'esny Mv Wakashio Oil	1323798	5009500	
			Spill			31519
101	1999	France	Erika	1260000.172	4768077.05	30000.0041
102	1968	South Africa	Esso Essen	1259763.12	4767180	29994.36
103	2007	Norway	Statfjord Oil Spill	1231440	4660000	29320
104	2011	Canada	Little Buffalo Oil Spill	1169868	4427000	27854
105	2005	United States	Shell (Hurricane Katrina)	1077510	4077500	25655
106	2005	United States	Murphy Oil USA Refinery Spill	1049802.6	3972650	
			(Hurricane Katrina)			24995.3
107	2010	United States	Kalamazoo River Oil Spill	1000545	3786250	23822.5
108	1989	United States	World Prodigy	999313.56	3781590	23793.18
109	2005	United States	Chevron (Hurricane Katrina)	985152	3728000	23456
110	2013	United States	North Dakota Pipeline Spill	865086.6	3273650	20597.3
111	1971	United States	Arizona Standard/Oregon Standard	831222	3145500	
			Collision			19791
112	2020	Venezuela	El Palito Refinery	831222	3145500	19791
113	1994	Puerto Rico	Morris J. Berman	800436	3029000	19058
114	2017	Greece	Agia Zoni Ii	769650	2912500	18325
115	2010	Singapore	Mt Bunga Kelana 3	769650	2912500	18325

116	1996	United States	North Cape	769650	2912500	18325
117	1994	South Africa	Apollo Sea	738864	2796000	17592
118	1990	United States	Apex Barges Oil Spill	677292	2563000	16126
119	1978	United States	Trans-Alaska Pipeline Sabotage by	665593.32	2518730	
			Explosives			15847.46
120	1968	Panama	Witwater	588012.6	2225150	14000.3
121	2007	Mexico	Kab 101	575390.34	2177385	13699.77
122	1990	United States	Arthur Kill Pipeline	566462.4	2143600	13487.2
123	1991	Saint Kitts & Nevis	MB Vesta Bella	558458.04	2113310	13296.62
124	2004	United States	MV Selendang Ayu	480261.6	1817400	11434.8
125	1978	Puerto Rico	Peck Slip Spill	477183	1805750	11361.5
126	2006	Phillippines	Guimaras Oil Spill	474104.4	1794100	11288.2
127	2010	United States	Port Arthur Oil Spill	461790	1747500	10995
128	2005	United States	Bass Enterprises (Hurricane Katrina)	461790	1747500	10995
129	1953	United States	SS Jacob Luckenbach	456864.24	1728860	10877.72
130	2000	South Africa	Treasure	431004	1631000	10262
131	1985	United States	Grand Eagle	431004	1631000	10262
132	2017	United States	Keystone Pipeline 2017 Spill	406990.92	1540130	9690.26
133	1903	Australia	SS Petriana	400218	1514500	9529
134	2015	United States	Illinois Train Derailment	400218	1514500	9529
135	2013	United States	North Dakota Train Collision	400218	1514500	9529
136	1950(?)-1996	United States	Avila Beach Pipeline	400218	1514500	9529
137	2017	United States	Delta House Floating Production	394060.8	1491200	
			Platform Spill			9382.4
138	2020	United States	Keystone Pipeline 2019 Spill	381746.4	1444600	9089.2

139	2010	United States	Trans-Alaska Pipeline	369432	1398000	8796
140	2001	Taiwan	Amorgos Oil Spill	354039	1339750	8429.5
141	2012	United States	Arthur Kill Storage Tank Diesel Spill	347881.8	1316450	
			(Hurricane Sandy)			8282.9
142	2000	Brazil	Petrobras Pipeline	338646	1281500	8063
143	2016	United States	2016 Colonial Pipeline Leak	336183.12	1272180	8004.36
144	1973	Venezuela	Trinimar Marine Well 327	335875.26	1271015	7997.03
145	2019	Brazil	Northeast Brazil Oil Spill	307860	1165000	7330
146	2008	Nigeria	Shell Bodo Pipeline Oil Spill	307860	1165000	7330
147	1953	South Africa	Sliedrecht	307860	1165000	7330
148	2007	Ukraine	Kerch Strait Oil Spill	307860	1165000	7330
149	1976	United States	Nepco 140	307860	1165000	7330
TOTAL				46,985,668,525	177,802,585,043	1,118,706,393

Data in Table 1 contained spills recorded for over 120 years, excluding spill incidents whose volumes are less than 307,000 gallons. A total of more than 149 incidents occurred worldwide. The table also summarized spill events for Nigeria [year ranging from 1976-1996], as culled from Inoni and his colleagues (2006); and the United States [1950(?)-1996 & 1976-1996]. Other sources used are Patel and his colleagues (2017), Melina (2010), ITOPF (2019) and Wikipedia (2013).

Above is a list of 52 countries where oil spill had triggered world outcry for the past 12 decades. Some of these countries had experience spill events almost on yearly basis. Countries like the United States (US) and Nigeria, ranked 2nd and 5th in the world currently, cumulatively lost approximately 21 million and 3.3 million barrels respectively of petroleum products to the ecosystem.

It is estimated that around 47 billion US gallons of crude oil had been spilled across the globe. Since 1991 to this present day, no country recorded oil-related offensive on the terrestrial environment than Kuwait, spilling over 1 billion barrels of crude oil/product; a value representing approximately 93.85% of total spill (Figure 2) in world history. Forty eight countries takes just 3.3% of the world total spill. It can be deduced from Figure 2, that only 0.71% of the spill was recorded in the Persian Gulf, an area surrounding UAE, Bahrain, Kuwait, Saudi Arabia, Iran, Qatar and Iraq.

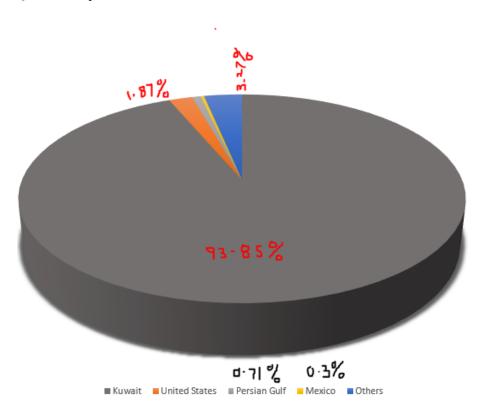


Figure 2: Percentage of Spill from 1900-2021 for 25 Countries

A spill is not peculiar to countries producing crude oils/product, but any country making use of the substance, as smaller countries like Chile, Mauritius, Saint Kitt and Nevis and others are not left out (see Figure 3).

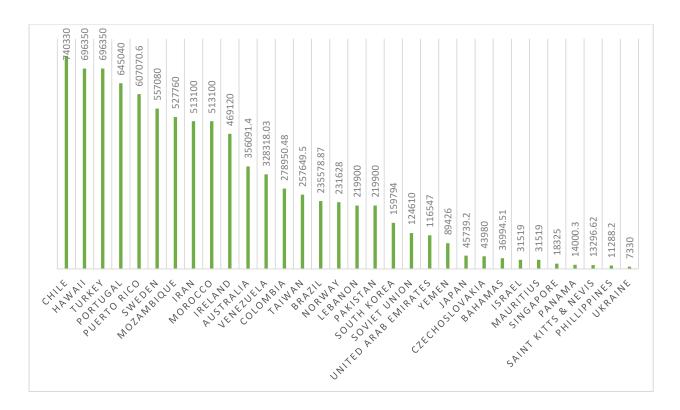


Figure 3: 32 Countries Showing Barrels of Crude Oil Spill Up to 2021

3. Causes and Hazards

Spills are unpredictable events. They constantly occur and are summarily caused by;

- a) Sabotage: Crude oil theft, terrorists attack, countries at war, vandals and illegal dumpers detrimentally cause severe damage to nation's economy also leading to huge loss of lives.
- b) Natural gas flaring
- c) Corroded oil pipelines
- d) Mistakes caused by reckless handling
- e) Natural disaster: Catastrophic weather conditions like hurricanes undoubtedly could result in oil boats summersaulting and emptying its content into water bodies.
- f) Leakages from faulty oil tanks: Obvious is the fact that oil spills from tankers or ships due to accidents, seriously affects human/animal health, crew's life (leading to economic losses to individual cargo/tanker owners) and revenue loss to a nation. Vancouver is an example of a coastal metropolitan area facing the possibility of substantially increased oil tanker traffic and the associated risk of oil spills [5].

Figure 4: Leakage Caused by Barge and Towboat Collision in Lower Mississippi River [12]

- g) Oil well drilling
- h) Equipment breakdown: Maintenance activities of oil companies in recent years had adversely affected the environment, with large volume being spilled on farmlands and rivers, depriving the host communities of their means of livelihood.
- Accidents: As seen in Figure 4, U.S. Coast guard reported that Barge E2MS 303 collided with a towboat on February 22, 2014 and began leaking 750 barrels of Bakken crude oil into the lower Mississippi River [12].
- j) Explosions of terminals/wells/stations

Hazards of crude oil exposure through spillage in broad sense, affects living organisms (humans, plants, animals and micro-organisms) and their habitats:

3.1. Impacts on Environment

Ideally, when oil spills, natural actions like weathering, evaporation, oxidation, biodegradation and emulsification reduces its severity and accelerates the recovery of the affected area. It is very rare for oil to sink. It needs to adhere to heavier particles such as sand, algae, or silt to sink. An exception is a kind of oil used for burning in electric utility plants. This oil can actually sink in water since it is heavier than water [10]. Regarding oil spillage impact on the soil, a study was done by Abdulrahman and his colleagues (2020) on soils found in Northern Nigeria where oil exploration began in 2018 (by allowing crude oil to infiltrate into the soil for six weeks) and results show negative consequences for road and building construction as the material physical property of the soil is altered. Soil properties like acidity, colour, nutrients and weight are strongly impacted by oil spill as investigated by Dorris (2010).

Figure 5: A Devastated Farmland in Ogoniland (Nigeria) Source: [13]

Deliberate or accidental spill on the environment (especially land-Figure 5) affects food production in several ways. They are; altered taste of produce, soil fertility reduction, burning and yellowing of crop leaves, contamination of water sources of livestock, outbreak of diseases and death of livestock, decay of tuber plants, increased soil temperature and toxicity, destruction of soil micro-organism etc. In water bodies, aquatic animals are severely injured and killed. Therefore, contaminated soil must be treated and washed before safely disposing it of in a landfill site.

3.2. Impacts on Humans

As stated by Shultz and his colleagues (2014), 45000 Gulf cleanup manpower during the Deepwater Horizon Oil Spill of 2010 developed oil-spill-associated illnesses (some of which are heat stress, sprains, respiratory complaints, dispersant and oil-contact skin problems) due to non-compliance to use of personal protective equipment (PPE). Potential sources of oil pollution in Denmark as identified by [14] are: (i) operational discharge from ships, (ii) accidental spill from ships, (iii) operational discharge from offshore production, (iv) accidental spills from offshore production, and (v) land based discharges.

In Nigeria, oil was first discovered in Ogoniland of Rivers State in 1958; a hunting, fishing and agrarian society in the Southern part of the country, often called the Niger-Delta... comprising of nine states, which are Rivers, Ondo, Imo, Edo, Delta, Cross-River, Bayelsa, Akwa-Ibom and Abia (just 7.5% of Nigeria's total land mass). Possible causes of oil spills in Nigeria according to [14] and [15] are loading/discharging of oil, bunkering, pipeline vandalization (about 800 reported cases in year 2000 alone), fire & explosion and routine ship operations. Intermittent oil spillage have rendered vast stretches of indigenous farmlands useless [15]. Healthwise, effect of these are impaired lung function, tracheities, skin reactions, chemical bronchitis and other hazards like choking from smoke, trauma and water contamination as evidenced in the research carried out by Nwachukwu and his colleagues (2014) on water quality of Abacheke community of Imo State of Nigeria. Also discovered is that ocular anterior segment disorders are prevalent in communities affected by oil spillage and could be due to exposure to petroleum-related chemical irritants [16].

3.3. Impacts on Micro-organisms and Other Animals

Oil floats on fresh water (rivers & lakes) and salt water (oceans), rarely sinking when heavy in freshwater [12]. With a lighter density than water, oil released into the marine environment usually makes its way to the sea surface, forming oil sheens, slicks (Fig. 1), or emulsions of gas, water, and oil commonly referred to as 'mousse' [17]. Oil can affect marine organisms by coming into contact with either the external or internal body surface [6].

Microalgal community (predominated by pinnate diatoms, and including cyanobacteria, chlorophyta, chrysophyta and few species of centric diatoms) found in the sandy beach of the estuary to a recent oil spill had been investigated by Essien and his colleagues (2005) concluding that a significant percentage is lost as a result of the spill.

Fish species that live or spend time close to the water surface, the shore, or the sea floor in shallow water are the most vulnerable to oil spills. Plankton are killed by relatively low concentrations of oil, but are present in such numbers that lost individuals are replaced quickly with little detectable disturbances. Benthic species can be killed when large amounts of oil accumulate on the bottom sediments. Animals are also at risk from ingesting oil, which can reduce the animal's ability to eat or digest its food by damaging cells in the intestinal tract [8].

Figure 6: A Bird Coated with Oil

The two major pathways of oil exposure for birds are fouling of the feathers (Fig. 6) and ingestion [18]. Upon contact, bird's feather loses its function of buoyancy, insulation and flight. When a seabird's feather contacts (atleast 10 ml of oil) slicks on shorelines or water, the birds rapidly lose its body heat and may lead to death [6]. This concentration varies with organism involved and may reach up to a maximum of 20,000ppm. On land, heat lost is not severe and birds may survive but could contaminate their eggs or young in which only a few drop is enough to kill them. Egg laying may stop or reduce with small ingestion of oil as well as hatchability of the eggs [10]. Coastal dolphins, after chronic exposure will face a long-term health challenges.

Figure 7: A Scene in Uruguay where 10000 Baby Seals Perished by a Rocky Shoreline

As depicted in Fig. 7 [18], after a large oil spill in South America, about 10,000 baby seals perished when the beaches of their island were contaminated by oil. Older seals, sea lions, and walruses can take a large amount of oiling without causing death.

4. Compensation and Cleanup Strategies

Loses due to petroleum spills are immense set back to nations. It is therefore important to device a workable environmentally friendly curtailing strategy to prevent or reduce the adverse effect caused by oil spilled on land or waters. Developing a safe clean up strategies in addition to creating laws sanctioning deliberate reckless attitude of oil workers that resulted in the spill will go a long way in (at least) mitigating the problem.

4.1. Enacting Laws

Agu and his colleagues (2015) suggested that the oil companies responsible for oil exploration like Shell, BP and others be compelled to pay adequate compensation to the people when such devastation occurs. Example where such was done was in the United States where victims of the Exxon Valdez oil spill (Table 1) were compensated after the swift passage of the Oil Pollution Act of 1990 (OPA 1990) as well as the Deepwater Horizon oil spill incident as reported by Ramseur (2015). Nigeria's first step towards addressing crude oil spill issues was becoming a member of the International Maritime Organization (IMO) as well as establishing the Ministry of Environment. It is again necessary to order clean up by authorities to companies responsible for such spills. Even though, clean up is costly and time consuming, clean-up expenses are minor compared to the negative impact on an organization's brand and image.

4.2. Clean up Procedures

There are many methods of crude oil clean up for land and sea oil spills. Factors affecting the selection of these

methods are shoreline geology and rate of water flow, oil type, and sensitivity of organisms affected to the clean up strategy. These are explained below:

4.2.1. Containment and Recovery

Containment of an oil spill refers to the process of confining the oil, either to prevent it from spreading to a particular area, to divert it to another area where it can be recovered or treated, or to concentrate the oil so it can be recovered or burned [19]. A boom is a floating mechanical barrier designed to stop or divert the movement of oil on water. Booms are generally the first equipment mobilized at a spill and are often used as long as the oil persists on the water surface [8,18].

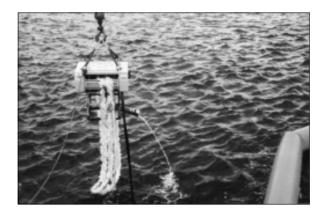


Figure 8: Oleophilic Skimmer [8]

Recovery is the next step after containment in an oil spill cleanup operation. Skimmers (Fig. 8) are mechanical devices (examples are oleophilic, weir and suction) designed to remove floating oil from a water surface [8]. They vary greatly in size, application, and capacity, as well as in recovery efficiency. Skimmers are classified according to the area where they are used, for example, inshore, offshore, in shallow water, or in rivers, and by the viscosity of the oil they are intended to recover [18]. Skimmers separate oil from the water by: centripetal force, lifting oil on a conveyor belt off the water surface or wringing out the oil that clings to oleophilic (oil-attracting) rope mops. This technique is the most widely used as it is least destructive and only 10-15% efficient under even the best circumstances [10].

Scrapers, bulldozers and front-end loaders are also mechanical recovery equipment (used in limited capacity), having potentials of causing severe and long-lasting damage to sensitive environments. Possible areas of applications are agricultural land, roadsides and urban areas. Construction of berms/trenches/dikes are temporary or permanent method of containment involving the setting of barriers (using retaining walls, soil, sand bags or construction material) in the path of oil to prevent oil from spreading horizontally. This enhances oil recovery from the dogged trenches or burned by in situ burning.

4.2.2. Dispersant

Chemical dispersants which function best in hot water can be applied to the oil to break down the oil into small

droplets. It was reported by Othumpangat and his colleagues (2014) that the Exxon Valdez spill was contained utilizing the method of burning and chemical dispersants. As explained by Levine (2002), dispersant are chemicals that act like detergents to break oil up into tiny droplets to dilute the oil's effect and to provide bite-sized bits for oil eating bacteria. Table 2, reiterated that the use of chemical dispersant comes with demerits; one of which is weathering of oil, often due to increase in viscosity.

Adva	ntages	Disadvantages		
•	Removes surface oil and dilutes oil into the	• Temporarily increases the bioavailability of		
water	column	toxic oil fractions		
•	Facilitates natural oil biodegradation	• Temporarily increases localized risks		
•	Reduces exposure to workers recovering oil	particularly to entrained aquatic species (eggs,		
at the	surface	plankton, less mobile animals)		
•	Minimizes impacts on shoreline habitats	• Cannot be used under certain weather		
•	Minimizes impacts on populations with long	conditions		
life-sp	ans (birds, mammals, turtles)	• Cannot be used on all oil types and are less		
		efficient on weathered oils		

Table 2: Positive and Negative Impacts of Chemical Dispersants Use [18]

4.2.3. Burning

In situ burning is a method of burning freshly spilled oil, usually while it's floating on the water [12]. Burning is usually 95-98% efficient, but does cause black smoke [20].

Figure 9: Oil spill Clean Up Source: [21]

When conducting in-situ burning on land, berms or trenches serve a similar containment function as fireresistant booms [22].

4.2.4. Sorbent

Oil can be removed through absorption or adsorption process using sponges made from diaper-like substances (or materials made from straw, grasses, coconut husks or wood chips) as they are capable of soaking up liquids. Sorbents can be natural or synthetic materials. Natural sorbents are divided into organic materials; such as peat moss, perlite, glass, wool, sand, volcanic ash or wood products and inorganic materials; such as vermiculite or clay. Synthetic sorbents include man-made materials that are similar to plastics, such as polyurethane, polyethylene, and nylon fibers [8]. Sorbents are available in a loose form, which includes granules, powder, chunks, and cubes, often contained in bags, nets, or socks [10].

4.2.5. Bioremediation

Spill situations can be remedied using plants or animals in form of micro-organisms. They are of two types; bioremediation and phytoremediation. Bioremediation is a method of increasing the rate of biodegradation by adding materials to the environment, such as fertilizers or microorganisms. Natural processes, such as oil-eating bacteria and wave action, also help to disperse and degrade oil, and may be more effective than human efforts[23,24]. Biodegradation is a process by which microorganisms such as bacteria, fungi, and yeasts break down complex compounds into simpler products to obtain energy and nutrients [8]. Phytoremediation is a green process that involves the use of plant in removing or degrading contaminants in the environment. Plants are able to remove pollutants through processes such as biodegradation, phytovolatilization, accumulation, and metabolic transformation [7].

4.2.6. Shore-line Clean up

Many methods are available for removing oil from shorelines or land forms. Some are tilling and aeration, sediment reworking, sorbents, and chemical cleaning agents.

Figure 10: High Pressure Washing a Rock Beach in Alaska [10]

High-pressure hosing (Fig. 10) can be applied to rinse oil back into water to be skimmed up. This usually does more harm than good by driving the oil deeper into the beach and by killing every living thing on the beach [10].

5. Conclusion

Findings shows that the largest oil spill in world history occurred in Kuwait in 1991 representing 93.85% of the entire spills. The world had recorded over 1 billion barrels of spill in the past century. Even 1% of the total spill (see Table 1; approximately 11 million barrels) if spilled accidentally is capable of causing tremendous damage to organisms and environment. It can be concluded that oil spill prevention remains the only way to manage the transportation and exploration of this hazardous material, as no foolproof cleanup methods have been discovered. It is recommended to prevent oil spillage by making sure oil workers work with standardized project management techniques during exploration and other activities. Modification of the existing clean up techniques to make it less hazardous to the ecosystem will be a probable solution to clean up challenges faced currently.

References

- A. Galierikova and M. Materna, "World Seaborne Trade with Oil: One of Main Cause for Oil Spills?," Transportation Research Procedia, vol. 44, p. 297–304, 2020.
- [2] S. Abdulrahman, S. I. Malami, T. A. Adedokun, A. Haruna, Y. B. Attahiru and S. I. Haruna, "Effect of crude oil spillage on engineering properties of tropical residual," in 2nd International Conference on Civil & Environmental Engineering, Malaysia, 2020.
- [3] U. Umaiyan and S. Karthigeyan, "Geotechnical Characterization of Contaminated Sand by Oil Spillage," in First Annual Conference on Innovations and Developments in Civil Engineering, ACIDIC-2014 NITK,

Surathkal, 2014.

- [4] S. Othumpangat and V. Castranova, "Oil Spills," Encyclopedia of Toxicology, vol. 3, p. 677–681, December 2014.
- [5] S. E. Chang, J. Stone and M. Piscitelli, "Consequences of oil spills: a review and framework for informing planning," Ecology and Society, vol. 19, no. 2, pp. 1-26, 2014.
- [6] R. J. Snowden, "Monitoring the impacts of the Gulf war oil spillages: the implications of inadequate baseline data," Baseline Data, vol. 8, no. 1, pp. 2-8, 2012.
- [7] A. C. Ndako, E. O. Oladoja and A. Kamoru, "Application of phytoremediation in the management of oil spillage: A review," Global Journal of Earth and Environmental Science, vol. 3, no. 3, pp. 16-22, August 2018.
- [8] EPA, Understanding Oil Spills And Oil Spill Response, USA: Environmental Protection Agency, USA, 1999.
- [9] L. Donaldson, Nanotechnology, 6 ed., vol. 15, 2012.
- [10] E. Levine, "Effects of Oil on the Marine Environment, Contingency Planning and Spill Response," 2002.[Online]. Available: http://response.restoration.noaa.gov.
- [11] BP, "Approximate Conversion Factors," BP plc, 2021. [Online]. Available: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statisticalreview/bp-stats-review-2021-approximate-conversion-factors.pdf. [Accessed 18 July 2021].
- [12] NOAA, "Office of Response and Restoration," 5 February 2019. [Online]. Available: response.restoration.noaa. [Accessed 14 July 2021].
- [13] M. A. Ebim, "An Ecolinguistic Study of Media Depictions of Oil Spillage in Ogoniland," Language & Ecology, pp. 1-20, 2016.
- [14] J. L. Daura, "Developing an effective mechanism of oil pollution management in the Niger Delta," World Maritime University Dissertations, pp. 1-80, 2000.
- [15] O. P. Agu, A. O. Ani, C. A. Peter-Onoh, J. A. Echetama, C. O. Madueke, F. O. Ugwoke and A. L. Onoh, "Effect of Oil Spillage On Agricultural Production in Rivers State, Nigeria," FUTO Journal Series, vol. 1, no. 2, pp. 55-61, 2015.
- [16] E. A. Awoyesuku, N. E. Chinawa and S. C. Ejimadu, "Distribution of Ocular Disorders in Communities Affected by Crude Oil-spillage in Rivers State," Ophthalmology Research: An International Journal, vol. 11, no. 3, pp. 1-5, 2019.
- [17] S. J. Harrison, "Lessons from the Taylor Energy Oil Spill: History, Seasonality, and Nutrient Limitation," 2017.
- [18] J. Michel and M. Fingas, "Oil Spills: Causes, Consequences, Prevention, and Countermeasures," in Fossil Fuels, vol. 16, Concordia University College of Alberta, 2015, pp. 159-200.
- [19] M. F. Fingas, "The Basics of Oil Spill Cleanup," Taylor and Francis, 2012.
- [20] F. Cumo, F. Gugliermetti and G. Guidi, "Best available techniques for oil spill containment and clean-up in the Mediterranean Sea," Water Resources Management IV, vol. 103, pp. 527-535, 2007.

- [21] H. Kelley, "Introduction: Oil Spill Effects and Solutions," 2018. [Online]. Available: http://questgarden.com/137/13/2/111211134752/index.htm. [Accessed 19 July 2021].
- [22] API Energy, "In-situ Burning," 2021. [Online]. Available: oilspillprevention.org/oil-spill-cleanup/oil-spillcleanup-toolkit/in-situ-burning. [Accessed 17 July 2021].
- [23] T. C. Hazen, E. Dubinsky, T. Z. DeSantis, Y. Piceno, N. Singh, J. K. Jansson, A. Probst, S. E. Borglin, J. L. Fortney, W. T. Stringfellow, M. Bill, M. E. Conrad, L. M. Tom, K. L. Chavarria, T. R. Alusi, R. Lamendella, D. C. Joyner, C. Spier, J. Baelum, M. Auer, M. L. Zemla, R. Chakraborty, E. L. Sonnenthal, P. D'haeseleer, H.-Y. Holman, S. Osman, Z. Lu, J. D. Nostrand, Y. Deng, J. Zhou and O. U. Mason, "Deep-Sea Oil Plume Enriches Indigenous Oil-Degrading Bacteria," REPORTS, vol. 330, pp. 204-207, 8 October 2010.
- [24] J. S. Gutierrez, M. W. Dietz, J. A. Masero, R. E. Gill, A. Dekinga, P. F. Battley, J. M. Sanchez-Guzman and T. Piersma, "Functional Ecology of Saltglands in Shorebirds: Flexible Responses to Variable Environmental Conditions," Functional Ecology, vol. 26, pp. 236-244, 2012.
- [25] H. X. Zhang, Q. Ji and Y. Fan, "What drives the formation of global oil trade patterns?," Energy Economics, vol. 49, pp. 639-648, 2015.
- [26] J. M. Shultz, L. Walsh, D. R. Garfin, F. E. Wilson and Y. Neria, "The 2010 Deepwater Horizon Oil Spill: The Trauma Signature of an Ecological Disaster," The Journal of Behavioral Health Services & Research, pp. 1-20, 2014.
- [27] A. N. Nwachukwu and J. C. Osuagwu, "Effects of Oil Spillage on Groundwater Quality In Nigeria," American Journal of Engineering Research (AJER), vol. 3, no. 6, pp. 271-274, 2014.
- [28] J. P. Essien and S. P. Antai, "Negative effects of oil spillage on beach microalgae in Nigeria," World Journal of Microbiology & Biotechnology, vol. 21, p. 567–573, June 2005.
- [29] O. M. Dorris, "Impact of Crude Oil Spillage on Soil and Food Production in Rivers State, Nigeria," Journal of Money, Investment and Banking, no. 19, pp. 28-34, 2010.
- [30] J. L. Ramseur, Deepwater Horizon Oil Spill: Recent Activities and Ongoing Developments, Congressional Research Service, 2015.
- [31] R. Melina, "Top 10 worst oil spills," 29 April 2010. [Online]. Available: https://www.nbcnews.com/id/wbna36852827.
- [32] Wikipedia, "List of Oil Spills," 2013. [Online]. Available: https://en.m.wikipedia.org/wiki/List_of_oil_spills. [Accessed 18 July 2021].
- [33] K. D. Patel and W. J. Rea, Reversibility of Chronic Disease and Hypersensitivity-The Environmental Aspects of Chemical Sensitivity, vol. 4, CRC Press, 2017.
- [34] ITOPF, "Oil Tanker Spill Statistics 2020," January 2019. [Online]. Available: www.itopf.org. [Accessed 18 July 2021].
- [35] O. Inoni, D. Omotor and F. Nkem, "The Effect of OII Spillage on Crop Yield and Farm Income," Journal of Central European Agriculture, vol. 7, no. 1, pp. 41-48, 2006.