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Abstract 

Graphene oxide (GO) was co-modified with copper, tungsten, and titanium oxide. The resulting samples were 

characterized using the X-ray diffraction (XRD), scanning electron microscopy, X-ray photoelectron 

spectroscopy, and nitrogen adsorption−desorption techniques. XRD analysis indicated the coexistence of TiO2, 

CuO, and WO3 in the catalysts. The catalytic performance of the resulting materials in the desulfurization of 

model oil fuel was evaluated using a photocatalytic reactor. The desulfurization rate, the refined oil yield, and 

the increase in the octane number of model oil reached 100%, 99.4%, and 1.6 units, respectively, under suitable 

conditions of a metal content of 10.3%, a metal ratio of 0.7, a reaction temperature of 313K, a reaction time of 1 

h, a catalyst/oil ratio of 0.25. 
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1. Introduction 

The combustion of sulfur-containing fuels releases SOₓ emissions, contributing to global warming. Strict 

regulations have been imposed on the sulfur content of transport fuels to control the SOx emission, and many 

studies have been focused on the ultra-deep desulfurization technology, which could produce “zero” sulfur fuel.  
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Although conventional hydrodesulfurization (HDS) is widely employed in refineries, it suffers from significant 

drawbacks, including high hydrogen consumption, extreme operating conditions (>3 MPa, >600 K), and poor 

efficiency in removing refractory sulfur compounds such as dibenzothiophene (DBT) and benzothiophene (BT) 

[1–3]. 

To address these limitations, alternative desulfurization methods have been explored, including 

biodesulfurization, selective adsorption, oxidative desulfurization (ODS), extractive desulfurization, ionic liquid 

extraction, alkylation [4–12], sono-hybrid techniques [13], and microbial desulfurization [14]. Among these, 

adsorptive and oxidative desulfurization are particularly promising due to their mild operating conditions 

(ambient temperature and pressure). In ODS, sulfur compounds are oxidized to sulfones or sulfoxides [15–19]. 

Photocatalytic desulfurization has received attention because of using hydrogen peroxide or oxygen as oxidants. 

Photocatalytic oxidation with TiO2 and indirect photooxidation, which produce oxidants under ultraviolet (UV) 

irradiation, have been reported. [20,21] However, rapid electron-hole recombination and low oil recovery rates 

limit the efficiency of these processes.  Recent efforts have focused on catalyst modification via doping to 

reduce bandgap energy or synthesize novel photocatalysts, though not all exhibit high activity [22,23]. TiO
₂–

graphene composites, for instance, demonstrate enhanced electron shuttling and storage properties [24–26]. 

While such materials have been extensively studied for organic pollutant degradation [27], their application in 

fuel desulfurization remains underexplored.   

In this study, graphene oxide (GO) was co-modified with copper, tungsten, and titanium to enhance 

photocatalytic selectivity, thermal stability, and charge separation efficiency for desulfurization of model oil 

fuel. The results demonstrate the potential of this approach for industrial applications.   

2. Experimental section 

2.1. Preparation of model oil fuel 

Mercaptan, alkyl sulphide, and thiophene compounds (thiophene, BT, and DBT) were dissolved in the mixture 

of n-octane (50 mL), benzene (20 mL), and butyl ethylene (30 mL) to obtain the model oil (a sulfur content of 

1500 μg/g).  

2.2. Preparation and Characterization of Catalysts 

CuW/TiO₂−GO was synthesized as previously reported [28], titanium tetrachloride (4 g), copper nitrate (2.2 g), 

ammonium paratungstate (3.8 g), and hydrochloric acid (50 mL) were combined in a 100 mL flask and heated to 

313–318 K for 3.5 h. The pH was adjusted to 7 using ammonia solution, followed by impregnation of GO (9 g) 

at 313 K for 2 h. The material was dried (403 K, 5 h) and calcined (673 K, 3 h). Catalyst crystallinity was 

analyzed by XRD (D/Max 2500X, Cu Kα radiation) and XPS (PHI-5000C ESCA, Al Kα source). The pore size 

and volume distribution were tested with nitrogen adsorption−desorption.  

2.3. Desulfurization Testing 
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Reactions were conducted in a photocatalytic reactor equipped with a 100 W mercury lamp (λ = 254 nm). 

Desulfurization of model oil was carried out in a photocatalytic reactor equipped with mercury lamps. A scheme 

of the reaction setup is shown in Figure 1. CuW/TiO2−GO (2.5 g) in the photocatalytic reactor was activated at 

423 K for 1 h under a nitrogen atmosphere. The photocatalytic reactor was heated gradually to the reaction 

temperature (293−333 K). Model oil (1 mL/min) and hydrogen peroxide (0.004 mL/min) were preheated to 323 

K.  

 After the reaction, the products were cooled, separated with a gas−liquid separator, and then analyzed by gas 

chromatography with the atomic emission detector. We calculated the desulfurization rate and refined oil yield 

as: 

Desulfurization rate = (C1 − C2)/C1 × 100%                          (1) 

Refined oil yield = (M1 − M2)/M1 × 100%                             (2) 

where C1 and C2 are the sulfur contents of model oil and refined oil, respectively, and M1 and M2 are the masses 

of model oil and refined oil, respectively. 

 

Figure 1: Schematic diagram of desulfurization of model oil: (1) air and N2 cylinders, (2) filters, (3) material 

tank, (4) bumps, (5) mixture, (6) reactor of photocatalytic oxidation, (7) heat exchanger, and (8) gas−liquid 

separator. 
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Figure 2: XRD patterns of CuW/TiO2−GO. 

As shown in Figure 3a, when P/P0 was lower than 0.43, the adsorption capacity increased with the increase of 

the relative pressure (P/P0), indicating that CuW/TiO2−GO possessed a certain amount of micropores. The 

curves of desorption and adsorption no longer overlapped when P/P0 increased further, and there was a clear 

hysteresis loop, which indicated that the catalyst possessed a large number of mesopores. While P/P0 was close 

to 1, the adsorption capacity of CuW/TiO2−GO was increased rapidly and did not reach saturation, which 

indicated that the catalysts also contained a small part of macropores. CuW/TiO2−GO had a wide distribution of 

the pore size, as shown in Figure 3b; the majority of holes was mesopores (2−25 nm), besides a small number of 

micropores. The average pore size and pore volume were 7.02 nm and 1.34 cm3/g, respectively. The peaks of O 

1s, C 1s, W 4f, Cu 2p, and Ti 2p were marked in the overview XPS spectra of CuW/TiO2−GO (Figure 4).  
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Figure 3: (a) Nitrogen physisorption isotherms and (b) pore size distribution curve of CuW/TiO2−GO. 
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Figure 4: XPS of CuW/TiO2−GO. 

The C 1s XPS spectra of GO at 284.7, 287.0, and 288.9 eV were assigned to sp
2
 carbon components, C−O 

single bond components, and C = O double bond components, respectively.[29] The peaks at 529.6 and 530.5 

eV were credited to O 1s. The XPS signal of W 4f at 35.7 eV was ascribed to W
6+

. The XPS spectra of Ti 2p 

and Cu 2p at 464.7 eV (Ti 2p
1/2

),459 eV (Ti 2p
3/2

), 953.7 eV (Cu 2p
1/2

), and 934.6 eV (Cu2p
3/2

) were attributed 

to Ti
4+

 and Cu
2+

, respectively. 

3.2. Effects of the Catalyst Metal Content on the Desulfurization Rate 

 Increasing the content of copper, tungsten, and titanium species can improve the photocatalytic activity of 

CuW/TiO2−GO for the desulfurization of model oil. The desulfurization rate increases rapidly and reaches the 

maximum when the metal ratio increased from 0 to 0.7 (Figure 5a), whereas a gradual decrease in the 

desulfurization rate is observed after the ratio increased higher than 0.7. The highest desulfurization rate was 

98% at a 10.3% Cu−W−Ti content and a CuW (Cu/W = 0.7:1) /Ti ratio of 0.7 (Figure 5b).  
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Figure 5: Effects of the metal content on the desulfurization rate of model oil (with the oxidant percent of 0.5%, 

the catalyst/oil weight ratio of 0.25, the reaction time of 1 h, and the temperature of 313 
0
K. 
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The desulfurization rate decreases with a further increase in the metal content. Catalysts to which only Cu 

species were added showed negligible activity for desulfurization of model oil, whereas the addition of copper, 

tungsten, and titanium species increased the activity. Therefore, the variation of the desulfurization activity 

should be related to the types and dispersion of metals on the catalyst surface. The decrease in the 

desulfurization rate at higher metal content can be ascribed to the decreasing accessibility of active sites. Owing 

to the presence of different active sites, CuW/TiO2−GO is active not only for the removal of thiophene and its 

derivatives but also for the removal of other sulfur compounds. First because the photogenerated electrons had a 

tendency to transfer from p-CuO to n-WO3 or n-TiO2 and the holes had an opposite tendency as a result of n−p 

junctions between p-CuO and n-WO3 (or n-TiO2). Second, the GO surface could decrease the recombination 

rate of photogenerated holes and electrons, because it acted as electron-trapping sites to trap the electrons and 

transfer them to hydrogen peroxide adsorbed on the CuW/TiO2−GO surface. [30−39] 

3.3. Effects of the Temperature on the Desulfurization Rate 

The desulfurization of model oil with CuW/TiO2−GO was carried out at temperatures from 293 to 333K.When 

the reaction temperature was increased from 293 to 313 K, the desulfurization rate of mercaptan, alkyl sulphide, 

and thiophene compounds gradually increased and reached a maximum. The desulfurization rate gradually 

decreased as the temperature was increased further (Figure 6). The increase in the temperature had an advantage 

to not only the desulfurization of model oil but also the decomposition of oxidants. The desulfurization rate 

reaches a maximum at 313K. The lower desulfurization rate at a higher temperature might be due to the rapid 

decomposition of H2O2. 

 

Figure 6: Effects of the temperature on the desulfurization rates of model oil (with the oxidant percent of 0.5%, 

the catalyst/oil weight ratio of 0.25, the metal content of 10.3%, the metal weight ratio of 0.7, and the reaction 

time of 1h. 
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3.4. Effects of the Catalyst/ Oil Ratio on the Desulfurization Rate 

A consistent increase in the desulfurization rate of mercaptan, alkyl sulphide, and thiophene compounds 

increased gradually, and reached a plateau with increasing the catalyst/oil ratios (Figure 7). 

The desulfurization rate of mercaptan, alkyl sulphide, and thiophene compounds reached the maximum 

desulfurization rates of 99.8, 100, and 99.9%, respectively, when the ratio was 0.25. Although the higher 

catalyst/oil ratios produced the more active sites of photocatalytic desulfurization, the turbidity of the reaction 

solution was increased as a result of the increase in the amount of catalyst. The catalyst/Oil ratio of 0.25 was 

favorable for the desulfurization of model oil.  

 

Figure 7: Effects of the catalyst/ oil ratios on the desulfurization rates of model oil (with the oxidant percent of 

0.5%, the metal content of 10.3%, the metal weight ratio of 0.7, the reaction time of 1h, and the temperature of 

313 K. 

3.5. Effects of the Reaction Time on the Desulfurization Rate 

The desulfurization rate gradually increased and reached a plateau as the reaction time was increased (Figure 8). 

The desulfurization rates of mercaptan, alkyl sulphide, and thiophene compounds reached the maximum of 98% 

at the reaction time of 1 h. The contact time between reactants and active sites was shortened with decreasing 
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the reaction time. On the contrary, the change of the desulfurization rate of model oil was slow because of 

decreasing the concentration of the reactants with increasing the reaction time. The reaction time of 1 h was 

suitable for the desulfurization of modele oil. 

 

Figure 8: Effects of the time on the desulfurization rates of modele oil (with the oxidant percent of 0.5%, the 

metal content of 10.3%, the metal weight ratio of 0.7, the catalyst/oil ratio of 0.25, the reaction time of 1 h, and 

the temperature of 313 K. 

3.6. Catalyst Recycle 

The recycle of CuW/TiO2−GO catalysts for desulfurization of modele oil was investigated. The sulfur content of 

modele oil was decreased from 1500 to 900 μg/g using the catalyst of CuW/TiO2−GO under the suitable 

conditions.  

4. Conclusion 

CuW/TiO₂−GO exhibited exceptional photocatalytic activity for model oil desulfurization, achieving 98% sulfur 

removal and 99.4% oil yield under mild conditions. The catalyst’s dual function (oxidation and cetane number 

enhancement) distinguishes it from conventional systems. Future work will focus on industrial-scale longevity 

and regeneration protocols. The sulfur compound content of modele oil was reduced from 1500 to 6.3 μg/g. 

Future work will focus on industrial-scale longevity and regeneration protocols.   
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[33]. Leflaive, P.; Lemberton, J. L.; Pérot, G.; Mirgain, C.; Carriat, J.Y.; Colin, J. M. On the Origin of Sulfur 

Impurities in Fluid Catalytic Cracking Gasoline-Reactivity of Thiophene Derivatives and of Their 

Possible Precursors under FCC Conditions. Appl. Catal., A 2002, 227, 201−215. 

[34]. Lee, M.; Yong, K. Highly Efficient Visible Light Photocatalysis of Novel CuS/ZnO Heterostructure 

Nanowire Arrays. Nanotechnology 2012, 23, 4014−4019. 

[35]. Jing, L.; Zhou, W.; Tian, G.; Fu, H. Surface Tuning for Oxide based Nanomaterials as Efficient 

Photocatalyst. Chem. Soc. Rev. 2013, 42, 9509−9549. 

[36]. Rodríguez-Cabo, B.; Rodríguez, H.; Rodil, E.; Arce, A.; Soto, A. Extractive and Oxidative-extractive 

Desulfurization of Fuels with Ionic Liquids. Fuel 2014, 117, 882−889. 

[37]. Shand, M.; Anderson, J. A. Aqueous Phase Photocatalytic Nitrate Destruction Using Titania Based 

Materials: Routes to Enhanced Performance and Prospects for Visible Light Activation. Catal. Sci. 

Technol. 2013, 3, 879−899. 

[38]. Osterloh, F. E. Inorganic Nanostructures for Photoelectrochemical and Photo -catalytic Water Splitting. 

Chem. Soc. Rev. 2013, 42, 2294−2320. 

[39]. Xiao, J.; Wu, L.; Wu, Y.; Liu, B.; Dai, L.; Li, Z.; Xia, Q.; Xi, H. Effect of Gasoline Composition on 

Oxidative Desulfurization Using a Phosphotungstic Acid/ Activated Carbon Catalyst with Hydrogen 

Peroxide. Appl. Energy 2014, 113, 78−85. 

 

 

 

 

 

 

 

 

 

 

 

 


