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Abstract 

Computer vision has emerged as a game-changing technology in the mining industry, revolutionizing operations 

and unlocking various use case scenarios. With increased trade facilities, ports are recognized as one of the most 

diligent work environments globally. The applications of machine learning and computer vision in ports offer 

improved security, efficient container management, intelligent traffic management, predictive maintenance, 

automated operations, and environmental monitoring. These advancements contribute to streamlined processes, 

cost reduction, enhanced safety, and overall optimization in port environments. This study proposes an approach 

to detect and classify vehicles in a port during the wintertime in Finland using computer vision and machine 

learning methods. Due to the high variability between seasons, particularly winter and summer in Finland, there 

might be a need to categorize images by time of year. The study is developed as a model to detect and classify 

vehicles in the port area, and the port used in the study acts as an international hub for various trades and 

industries, including but not limited to chemistry and mining. 

Impact Statement 

Ports play a crucial role in the international transportation of goods related to various industries. Due to their 

importance, harbors are large, diligent, and often complex environments featuring vehicles of multiple types. 

Presented here is an approach that can detect and recognize vehicles in the port area with an accuracy of over 

90% utilizing computer vision and machine learning. In addition, methods for discerning the time of day and 

season from image streams are proposed.  
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These three processes, when combined, provide a comprehensive solution for enhanced harbor management that 

can revolutionize port operations. Using artificial intelligence in ports improves efficiency and safety, reduces 

costs, optimizes logistics and resource allocation, and facilitates sustainable economic growth. Furthermore, the 

vehicle detection and classification part of the proposed approach is designed in ways that can require relatively 

little computational power, storage space, and training time, thus leading to greener technology. 

Keywords: Artificial Intelligence; Computer Vision; Edge Detection; Machine Learning. 

1. Introduction 

Ports play a crucial role in transportation hubs for various industries, and the integration of artificial intelligence 

(AI), specifically computer vision and machine learning, enables monitoring both the quantity and quality of 

goods stored and transported within the harbor vicinity. Utilizing image streams from port-installed webcams, 

AI employs many specialized algorithms, methods, and sub-routines to gather, process, and analyze diverse 

information types. The applications of machine learning and computer vision in ports bring significant benefits 

and improvements to various operations and processes. 

The use of AI provides enhanced security, efficient container management, intelligent traffic management, 

predictive maintenance, automated operations, and environmental monitoring. Machine learning and computer 

vision enable advanced port surveillance systems, including object detection, anomaly detection, and facial 

recognition [1]. These technologies help detect potential security threats, monitor access points, and enhance 

safety and security. Machine learning algorithms can optimize container placement and tracking, leading to 

improved efficiency in port operations. Computer vision techniques can accurately identify and track containers, 

facilitating automated inventory management and reducing errors and delays. By analyzing real-time data from 

cameras and sensors, machine learning can optimize traffic flow within the port area. It can predict and mitigate 

congestion, identify bottlenecks, and suggest alternative routes, thereby improving overall logistics and reducing 

transit times. Machine learning algorithms can analyze sensor data from port equipment and predict 

maintenance needs. By detecting potential equipment failures in advance, maintenance activities can be 

scheduled proactively, thus minimizing downtime and optimizing equipment utilization [2]. 

Computer vision enables the automation of various port operations, such as automated guided vehicles (AGVs) 

for cargo handling, robotic crane systems, and autonomous drones for inspections. These technologies increase 

operational efficiency, reduce human error, and improve productivity. Computer vision combined with machine 

learning can assist in monitoring environmental aspects within ports, such as air quality, water pollution, and 

noise levels. These data can help identify and address environmental concerns, ensuring regulation compliance 

and promoting sustainable practices [3]. 

Increased container traffic in ports requires adjustments to port terminals and better connections. Ever larger 

ships have increased the pressure on ports and the cities they serve. In addition, growing environmental 

concerns have driven the sector to adapt to greener regulations. The global maritime industry is highly 

competitive internationally. AI can analyze the information to provide insights for better decision-making, 
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improvement of safety and energy efficiency, and optimization of logistics. 

Despite advancements in AI and computer vision technologies, effective monitoring and management of port 

operations – particularly vehicle detection and classification – remains challenging. Known current models do 

not account for significant seasonal variations, fluctuating lighting conditions, and highly varying vehicle types, 

leading to reduced accuracy and reliability of object detection and classification. To address this gap, we 

propose a novel computer vision and machine learning system that integrates time-of-day and seasonal detection 

as part of the vehicle classification process. The proposed model is adaptable to the high variability between 

winter and summer environments, offering a comprehensive solution for enhanced port management, potentially 

revolutionizing how ports handle traffic management and operations in adverse conditions. 

The study was done for the Port of Kokkola, one of the leading ports of Finland and the only port in the Nordics 

to offer an all-weather terminal where goods can be loaded and unloaded in protection from wind and weather 

[4]. The Port of Kokkola serves the mining industry. It also acts as a link between different countries. 

Furthermore, the local industry, especially the chemical industry cluster in the nearby industrial park, and trade 

in Kokkola form significant customer groups. The Port of Kokkola consists of three ports: Hopeakivi 

(Silverstone Port), Kantasatama (General Port), and Syväsatama (Deep Port). Figure 1 illustrates the port 

locations. 

 

Figure 1: Three ports of the Port of Kokkola. The shortest distance between Kantasatama and Hopeakivi is 

approximately 1800 m and between Hopeakivi and Syväsatama approximately 200 m 

The novelty of the study can be summed up with a few points: 

 integration of time-of-day and seasonal detection as part of the vehicle classification process,  

 lower requirements for processing power, training time, and storage space in comparison to more 

conventional models, such as neural networks, and 

 compiling a timeline of the vehicle classification results for a more detailed analysis of the port activity and 
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operations. 

The research question is: How can a computer vision system be adapted to reliably detect and classify vehicles 

in a port environment, particularly under varying seasonal and lighting conditions, to improve the efficiency of 

port operations? 

2. Dataset 

The data for creating, training, and testing AI consist of two image sets taken by the web cameras placed in the 

different locations of the port and saved on web servers. Each image has a 24-bit color and dimensions of 1280 

 720 pixels. 

2.1. Image Set 1 

The first set of images was captured between 4 January 2022, 9:48 p.m. and 10 January 2022, 12:53 p.m. The 

average sampling resolution was around 10 minutes, making the dataset consist of 2423 images or about 807–

808 images per port. Figure 2 shows a simple data acquisition software developed for downloading the first set 

of images for training the AI. The program uses Selenium for automated tasks, such as logging in and 

downloading images [5]. 

 

Figure 2: Structure of the tool program that collected the first images 

2.2. Image Set 2 

The second set of images was captured in two periods. The first was between 16 June 2022, 7:33 a.m. and 17 

June 2022, 1:57 p.m., and the second was between 20 June 2022, 6:55 a.m. and 30 June 2022, 11:27 a.m. The 

average sampling resolution was about 10 minutes. Data for the Syväsatama port were unavailable in June 2022, 

so the image set consists of 1888 photographs (973 for Hopeakivi and 915 for Kantasatama). A program was 

developed to obtain this second set of images. Figure 3 shows the structure of this tool. The sources are Uniform 
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Resource Locator (URL) addresses pointing to the most recent photographs of each port, and the “last modified” 

time is parsed from the response to the Hypertext Transfer Protocol (HTTP) request used for getting the image. 

 

Figure 3: Structure of the tool that collected the second set of images 

3. Methods 

To assess the feasibility of implementing a computer vision application to identify and classify vehicles in the 

port area, the following methods were used to evaluate the application of computer vision in a port system and 

the performance impact of the results on image set size and distribution. Applying time-of-day detection, season 

detection, and vehicle detection using computer vision in transport systems provides a comprehensive solution 

for dynamic scheduling, context-aware decision-making, and efficient resource allocation. This results in 

optimized traffic management, improved road safety, and enhanced efficiency. 

3.1. Detection of time-of-day 

The first algorithm developed was the differentiation between day and night — or, more precisely, between light 

and dark. The ability to discern times of day might enable the AI to choose optimal analysis methods for each 

lighting-dependent situation. The most crucial libraries in this implementation are OpenCV [6] and NumPy [7]. 

The algorithm detects and separates the sky from the image and compares the sky color information with 

threshold values, as shown in Figure 4. 
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Figure 4: Day and night classification algorithm with example 

The first step is to perform edge detection. This is based on the observations that there are typically few edges in 

the sky, and everything below the horizon often consists of many boundaries. The Canny edge-detection method 

[8] is used. The threshold parameters for the first and second hysteresis procedures are 16 and 64, respectively. 

Both hysteresis parameters were experimentally proved. The second step is to fill the gaps in the horizon. This is 

realized using morphological dilation with a structuring element of ones and the size of 3  1 pixel, or three 

columns and one row. The element shape — more columns than rows — is based on the typical horizon outline. 

The dilation is done three times, and the result is converted from grayscale to the red-green-blue (RGB) color 

space. The third step is flood-filling the dilated color image. Three seed point positions are chosen: the leftmost, 

the middle, and the rightmost pixel from the top row. It is critical for the fill color not to be the same as the 

background or the dilated edges so the sky can be extracted from the image. In this case, the experimentally 

chosen RGB values of 36, 255, and 12 were used. The fourth step is subtracting the dilated RGB image from the 

flood filled. This yields a picture with all edge information removed and only two components left: the sky and 

everything else. In the fifth step, the result is converted to grayscale. 

A simple binary method is used in the sixth step for image thresholding, with 0 and 255 as parameters. In the 

seventh step, the result is converted to blue-green-red (BGR) color space. This way, the processed image (the 

mask) can be compared with the original. The eighth step is to perform a bitwise AND operation on the original 

and the processed images. The result is colorless, except for the sky that, in other words, is extracted from the 

image with the binary mask. The ninth step is to convert the sky image to hue-saturation-value (HSV) color 

space, simplifying brightness comparison with threshold levels. The tenth step is to select all HSV pixels with a 

non-zero color on at least one channel. In the eleventh step, a channel-wise average for Hue, Saturation, and 

Value is calculated from each pixel selected in step ten. The twelfth and final step is to compare the averages 

with threshold levels. A maximum of 99 was chosen for Saturation, and a minimum of 121 was picked for 

Value. Both points were selected experimentally. If these conditions are satisfied, the AI assumes the image was 

taken during the day. Otherwise, the picture was probably taken at night. 
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This comparison can be expressed as 

𝑡 = {
"day", if ( > 120𝛬 <𝑆

− 100)𝑉
− ,

"night", otherwise.
 (1) 

In (1), 𝑣̅ and 𝑠̅ denote the averages of the Value and Saturation channels of the selected pixels, and 𝑡 is the time 

of day when the image was likely captured. 

3.2. Season Detection 

There is a need to classify images by the time of year due to the high variability between seasons, especially 

winter and summer, in Finland. Subsequently, this information can be used as a basis for selecting the ideal 

methods for further analysis of images – or choosing vehicle detection models in the case of this study (Figure 

5). An image classification model for season detection was created with Lobe [9]. Lobe offers a powerful 

computer vision solution for image classification that is applicable for season detection, enabling accurate 

identification of seasons from images, which can be leveraged for various applications such as environmental 

monitoring, agricultural planning, and content creation. This model was trained on a dataset where the first and 

second image sets formed the winter and summer categories, respectively. The model was exported to 

TensorFlow [10]. 

 

Figure 5: Choosing the vehicle classification model based on season 

3.3. Vehicle Detection and Classification 

Tracking the various types of vehicles in the port area is a vital responsibility all ports share. The photographs 

taken in the winter indicate the presence of cars, trucks, forklifts, and others. Vehicle category breakdown by 

port is listed in Table 1. 
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Table 1: Vehicle categories in the three ports 

Category of Vehicle Hopeakivi Kantasatama Syväsatama 

Car Yes Yes Yes 

Truck Yes No Yes 

Forklift No No Yes 

Loader No No Yes 

Snowplow No No Yes 

Digger No No Yes 

Forklift/Snowplow Yes Yes Yes 

Before creating the model to recognize vehicles, each image from the dataset was scaled to 320  180, or 1/16th 

of its original size, to save the time needed for analysis. The resized images were processed using LabelImg 

software [11], an open-source graphical image annotation tool widely utilized in computer vision and machine 

learning projects for object detection and image classification tasks. This tool allows users to annotate objects 

within images by drawing bounding boxes around them and assigning labels. In LabelImg, users open a picture, 

define bounding boxes around the objects of interest, and set corresponding labels to them (a car, a truck, a 

forklift, etc.), ultimately generating annotated data for training machine learning models. An example is shown 

in Figure 6. 

 

Figure 6: Example showing the use of LabelImg software 

The study initially utilized pre-trained convolutional neural networks, such as YOLOv3 [12] and ResNet-50 

models [13]. Model training, testing, and validation were done using ImageAI software [14,15]. When the 

vehicle detection algorithm in this study was under development, ImageAI was based on TensorFlow [10,14]. 

Since then, the backend technologies have been changed to PyTorch [15]. Some tests were done with another 

YOLOv3 implementation, based on the work of [16,17] using TensorFlow [10]. There were no significant 

differences between the results from YOLOv3 [12] and ResNet-50 [13], so the work with the latter was stopped 

after early tests. The ImageAI version was retained because it was easier to train the models with it. However, as 

seen in the next section, the results from the neural networks pushed for a thorough redesign of the vehicle 
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detection and categorization model. 

OpenCV [6] was used to visualize all the results. 

4. Results and Discussions 

The time-of-day classifier categorized the image set with 98–99% accuracy. Misclassified images often have 

unusual brightness or darkness for the time of day, or their visibility is low due to weather conditions. 

As Lobe reported, the season classification model has an estimated 93% accuracy for a dataset comprising all 

study images. 

The test parameters and results of the YOLOv3-based network are listed in Table 2. 

Table 2: Parameters and results (separated by a dash) of the neural network trained for vehicle detection 

Metric/Parameter Value 

Batch size 2 

Number of experiments 7 

Evaluation samples 262 

Intersection over Union (IoU) 0.5 

Object threshold 0.3 

Non-Maximum Suppression (NMS) 0.5 

Car 0.7815 

Forklift/Snowplow 0.75 

Digger, Forklift, Loader, Snowplow, Truck 0 

Mean Average Precision (mAP) 0.2188 

To address the unsatisfactory results obtained from the neural networks, a different strategy was devised using 

decision trees implemented via the Scikit-learn library [18]. This method involves converting the scaled images 

from BGR to grayscale and using two phases (passes) to divide the result into non-overlapping blocks (tiles) of 

equal size, as shown in Figure 7. The solid lines represent the first phase, and the dotted lines indicate the 

second phase. The processes for training, testing, and using this new model are reported in Figure 8. The block 

size in Figure 9 that demonstrates the algorithm is 16  16 pixels. 
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Figure 7: Example of splitting an image into blocks in two phases 

 

Figure 8: Flowchart diagrams of developing and applying the model. (a) training, (b) testing, (c) using as part of 

an application 
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Figure 9: Creating and using data for decision trees to find and classify vehicles 

Each tile is flattened to a 1D array with NumPy [7], and the statistics in Table 3 are then computed for it using 

the NumPy [7] and SciPy [19] libraries. For better accuracy, the block-wise process is repeated with a half-tile 

offset, resulting in a semi-overlapping-block-based method, as seen in Figure 7. Images with extents not 

divisible by the block size are centrally cropped. 

Table 3: Block-wise statistics for the method 

Feature Definition 

Average The value returned by numpy.mean() 

Standard deviation The value returned by numpy.std() 

Mean-to-variance ratio Average divided by the square of the standard 

deviation if the standard deviation is not zero; 

otherwise, zero is used 

Skewness The value returned by scipy.stats.skew() 

Kurtosis The value returned by scipy.stats.kurtosis() 

Entropy The value returned by scipy.stats.entropy() 

Range The difference between the maximum and the 

minimum pixel value in the block 

Smoothness 1-1/(1+(σ
2
)), where σ is the standard deviation 

Time of day “day” / “night” or 1 / 0 as returned by the time-of-day 

detection method when given the complete BGR 

photograph as input 

Labels generated using the LabelImg tool [11] work as references for vehicle positions and categories. These 

labels are documented in Table 1, although the “Forklift/Snowplow” category was used only with the neural 

networks. A masked image is created from the labels and bounding boxes, with each object represented by a 

solid rectangular polygon filled in the color based on the category label's ID. The ID value is obtained by adding 
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two to the label index, with ID values zero and one reserved for the background and unidentifiable vehicles 

during the analysis phase. Each block is compared with the corresponding region in the masked image; if 

enough non-zero mask pixels exist within the tile, it is classified as belonging to a vehicle type indicated by the 

corresponding bounding box label ID. A block size of 6  6 pixels and a threshold value of 0.8 were used to 

determine whether a block encompasses a vehicle. This threshold implies that at least 80% of the mask pixels 

within the tile should be non-zero for the block to be classified as part of a vehicle. These parameters were 

chosen experimentally. A decision tree model is fitted with the block data and is saved for future use with the 

dump and load functions provided by [20]. The generation and application of data are illustrated in Figure 9. In 

Figure 9, 1) top left: scaled image; 2) top center: first-pass block division; 3) top right: second-pass block 

division; 4) bottom left: vehicles, such as a car and a forklift, were detected on the first pass; 5) bottom center: 

results from the second pass; and 6) bottom right: combined first- and second-pass results. The vehicle detection 

and classification method is used as follows: the image is first split into semi-overlapping blocks in the training 

phase that is shown in Figure 9 and Figure 10, and for each of these blocks, statistics in Table 3 are calculated 

and fed to the decision tree model that will return per-block labels. (See also Figure 8.) The decision trees were 

generated using a 70:30 train-test split on the dataset. The accuracy of comparing the test results with the actual 

test labels is 99% – a tremendous improvement over the 22% obtained from the neural network (Table 2). The 

confusion matrix is reported in Table 4, with correct predictions emphasized in gray. Precision, recall, and F1 

scores from the confusion matrix and k-fold cross-validation (k=5) are listed in Table 5. These results 

demonstrate that the proposed model performs robustly under varying circumstances, with weighted F1-scores 

indicating high reliability across daytime and nighttime conditions. 

Table 4: Test results of the decision trees as a confusion matrix 

Total number of blocks (in test data): 2251937 

Category 
Non-vehicle 

block 
Car Truck Forklift Loader Snowplow Digger 

Non-vehicle 

block 
2199000 2115 1 0 0 0 0 

Car 10489 39510 0 0 0 0 0 

Truck 136 0 265 0 0 0 0 

Forklift 124 16 0 220 0 0 0 

Loader 17 0 0 0 35 0 0 

Snowplow 2 0 0 0 0 1 0 

Digger 3 0 0 0 0 0 3 
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Table 5: Precision, recall, and F1 scores 

Precision, Recall, and F1 scores from the Confusion Matrix 

 Precision Recall F1 

Non-vehicle block 0.9951 0.9990 0.9971 

Car 0.9488 0.7902 0.8623 

Truck 0.9962 0.6608 0.7946 

Forklift 1.0000 0.6111 0.7586 

Loader 1.0000 0.6731 0.8046 

Snowplow 1.0000 0.3333 0.5000 

Digger 1.0000 0.5000 0.6667 

K-fold Cross-validation Scores 

 Precision 

(weighted) 

Recall 

(weighted) 

F1 

(weighted) 

K-fold 1 0.9958 0.9959 0.9958 

K-fold 2 0.9959 0.9960 0.9959 

K-fold 3 0.9959 0.9960 0.9958 

K-fold 4 0.9958 0.9959 0.9958 

K-fold 5 0.9959 0.9960 0.9959 

Average across 5 folds 0.9959 0.9960 0.9958 

The result can be further refined by post-processing. 

One way to improve the model accuracy is to use template matching, particularly near the image edges, where 

block coverage may be inadequate if the image size is not divisible by tile dimensions. The templates and the 

images they are matched on can be pre-processed with thresholding or edge detection for more generalizable 

results. 

Another accuracy improvement method involves filtering out the detected objects whose size, position, and 

pixel count are irrational. For instance, in the dataset utilized for this study, cars typically are not exactly one tile 

wide and high. Furthermore, vehicles of any kind are considered only if their topmost y-coordinate falls below a 

quarter of the image’s height. This is because the sky typically occupies the uppermost quadrant of the picture, 

and aircraft are not analyzed in this study. The third criterion is that at least one non-zero pixel needs to be in the 

area matching the vehicle position in the threshold image. 

The thresholding method used here was developed by [21] and implemented in the Scikit-image library [22]. 

The window size for the thresholding was 5  5 pixels, chosen experimentally. 

Yet another way to improve accuracy is bookkeeping and remapping. In the training phase, vehicle classes 

found in LabelImg-generated files can be automatically saved for each geo-location (port name). During the 
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analysis, incorrect labels given by AI can be corrected with a remapping file. For example, diggers appear only 

in Syväsatama in the data used in this study. The AI model sometimes misclassified trucks and cars in 

Hopeakivi and Kantasatama as diggers. Hence, a remapping was created to relabel “diggers” as trucks in 

Hopeakivi and cars in Kantasatama. 

Even with post-processing, the study has several limitations. The random-forest-based model, while efficient, 

may not generalize to other environments outside port settings, such as airports or logistics hubs, where vehicle 

types and environmental conditions differ. Additionally, the model performance on underrepresented vehicle 

types was limited, likely due to data imbalance, suggesting that additional data collection or class-specific 

tuning may be necessary. Finally, while computationally efficient, the model could face scalability challenges in 

high-traffic or larger environments, where implementations utilizing a graphical processing unit (GPU) may be 

required to achieve real-time performance. 

Future work to improve the performance of the model on underrepresented vehicle types could include 

collecting additional data, implementing oversampling, exploring data augmentation methods, or using a cost-

sensitive learning approach. Porting the model to GPU might efficiently rectify scalability challenges. 

An example outcome of vehicle detection and classification is presented in Figure 10, where two vehicles were 

found: a car and a forklift. Figure 10 (a) shows the labeled regions as an array where 2 = car and 4 = forklift. 

Zeros represent the background tiles where no vehicles were found. In Figure 10 (b), a visualization of the result 

is applied to the original unscaled image. 

 

Figure 10: (a) Result of vehicle detection and classification. (b) Visualization of detection and classification 

results superimposed on the original photograph 

The source image for the analysis in Figure 10 is shown on the top left of Figure 9. The AI model inaccurately 

found a small car between the two actual vehicles in an unprocessed result. This extra car was a piece of a wall 

in a building. The error was corrected with filtering based on object properties. 

A random forest is used instead of a single decision tree. This reduces overfitting and false positives in images 

the model has not learned but may grow the model size and processing time as seen in Table 6. The table also 

demonstrates the advantages of the random-forest-based model over neural networks: increased training speed 
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and accuracy and decreased need for temporary storage space. In addition, the central processing unit (CPU) 

speed of the optimized model is almost comparable to the graphical processing unit (GPU) speed of the more 

conventional approaches. Time-of-day classification and seasonal detection are excluded from the numbers in 

Table 6. 

The results in Table 6 seem to reflect the assumption that previous studies on vehicle detection, such as those 

utilizing YOLOv3 and ResNet-50, have focused primarily on achieving high accuracy in general-purpose 

settings without specific adaptability to seasonal or lighting variations. In contrast, the proposed model 

incorporates a hybrid approach, combining CNN-based season detection with a random-forest-based classifier to 

enhance detection under changing environmental conditions. This design addresses limitations identified in prior 

studies regarding adaptability and computational efficiency, making it a suitable choice for applications where 

real-time performance and adaptability are crucial. 

Table 6: Comparison of vehicle classification methods 

 Neural 

Network 

(ResNet-

50)
a
 

Neural 

Network 

(YOLOv3) 

Decision 

Tree
b
 

Random 

Forest (20 

trees) 

Training 

and 

testing 

time 

>6 hours
a
 40 hours 4 hours

b
 5 hours 

Disk space >700 MB
a
 4.83 GB 

(final 

model 235 

MB) 

25 MB
b
 270 MB 

Reported 

precision 

20%
a
 21.88% 99%

b, c
 99%

c
 

Processing 

time per 

photo 

1…2 

seconds 

on the 

GPU
a
 

<2 seconds 

on the 

GPU 

2…3 

seconds 

on the 

CPU
b,d

 

6 seconds 

(unoptimized), 

3 seconds 

(optimized) on 

the CPU
d
 

a
estimate, based on initial tests 

b
A single tree is impractical due to overfitting. 

c
post-processing excluded from precision values 
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d
post-processing included in times 

The analysis results can be converted to a time series where the presence of vehicles can be monitored over 

time; for instance, peak traffic hours of the port can be found. An example is given in Figure 11. The lower 

heatmap represents the calculations of how many percent of each photograph is occupied by vehicles; for 

example, a single car with a bounding box of 250  150 pixels would take up 2.44% of an image with 

dimensions of 1280  720 pixels. It is displayed in Figure 11 that during the observational period, the traffic in 

Kantasatama and Syväsatama peaked on 5 January 2022. The white lines in Figure 11 show timespans when 

photographic data were unavailable. 

 

Figure 11: Time series from the analysis results for the winter image set 

5. Conclusion 

Computer vision-based vehicle detection and classification systems have numerous advantages. Modeled for 

detecting and classifying vehicles in the port area, the study demonstrates the potential of computer vision 

technology in revolutionizing port operations. 

The proposed computer vision method successfully adapts to the challenges of varying seasonal and lighting 

conditions in port environments. With highly accurate time-of-day and season detection components, the system 

reliably detects and classifies vehicles even in adverse conditions such as nighttime and snow. This adaptability 

significantly improves the efficiency of port operations by ensuring accurate, near-real-time vehicle 

classification under diverse environmental conditions, making the model a valuable tool for modern port 

management systems. 
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The model demonstrates strong performance, as indicated by the high precision, recall, and F1 scores across 

most vehicle classes. The 5-fold cross-validation results confirm the stability of the model, with consistent 

weighted F1 scores near 0.996, indicating robust generalization. However, performance for certain 

underrepresented vehicle types, such as snowplows and diggers, shows room for improvement. These results 

suggest that further tuning and additional data collection could enhance the ability of the model to handle rare 

vehicle classes while maintaining total accuracy. Additionally, tuning parameters such as the number of trees, 

depth, or sample sizes could make the model more suitable for real-time applications. Speed improvements 

could also be achieved by porting the model to a GPU. 

While the random-forest-based approach offers significant advantages in terms of reduced processing power, 

shorter training time, and lower storage requirements than CNNs, it may generalize less effectively across 

diverse datasets or unseen scenarios. CNNs, with their ability to automatically learn hierarchical features, tend 

to excel in environments with high data complexity and variability, such as object detection tasks requiring 

subtle feature distinctions. In contrast, the random forest relies on hand-crafted features, which may make it less 

adaptable to fine-grained variations without extensive feature engineering. 

However, the efficiency and interpretability of the random forest mitigates this trade-off, making it a suitable 

solution for applications where real-time performance is needed but computational resources are limited. 

Additionally, specialized models for specific circumstances could further mitigate this trade-off. For example, 

an AI technique could dynamically select the most appropriate model, as seen with the CNN-based season 

detection used in this study. 

Future work could expand on the hybrid approaches already explored in this study, such as integrating CNN-

based season detection with random-forest-based vehicle detection and classification. Further research such as 

automated tuning of hyperparameters or incorporating dimensionality reduction could optimize the use of hybrid 

models to balance better generalization capabilities with practical deployment requirements. Additionally, the 

results of this study demonstrate the value of converting detection results into a time-series format, which offers 

long-term operational benefits by providing insights into how the model performs over time and supporting 

resource allocation and predictive maintenance in port management. 

In conclusion, the proposed system successfully addresses the primary research question by providing a 

computer vision solution that adapts to seasonal and lighting variations, ensuring reliable vehicle detection in 

diverse environmental contexts. This adaptability is crucial for modern port management, where operational 

efficiency and safety depend on accurate, consistent vehicle detection. Beyond ports, the developed techniques 

can be applied to industries with similar environmental challenges, such as airports, logistics hubs, and mining 

operations, where real-time monitoring of vehicles in dynamic conditions is essential. 

By improving efficiency, safety, and automation, the model opens possibilities for optimizing logistics, 

enhancing renewable energy operations, and facilitating sustainable economic growth. Continued research and 

development will further refine and expand the capabilities of computer vision systems in the port industry. 
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