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Abstract 

In this paper, the Coefficient Diagram Method is used to control the two-mass drive train system. For this, a 

first-order plus time delay (FOPTD) model is used. The various approaches used in the FOPTD are analyzed, 

and the polynomial controller has been designed, and its control action is discussed. As a result, for the two-

mass system, it is observed that the designed polynomial CDM controller exhibits better outcomes for the TD 

approximation followed by the Padé approximation. However, the TN approximation is generally not 

recommended for successful performance. 

Keywords: Two-mass system; Coefficient Diagram Method; FOPDT. 

I. Introduction  

One of the furthermost widely used control laws is the PID type controller, With its three terms functionality 

covering dealing with both transient and steady states response, PID controller offers the simplest and efficient 

solution for different real control problems. In a two-mass resonant system, PID plays a principal role for the 

control of the system responses, and many other methods have been used for the system control such as 

resonance ratio approach, pole placement, and optimal control [1,2,3,4]. PID controller design aims to determine 

a set of gains in such a way to meet the transient response, the disturbance rejection, and the steady-state error. 

However, in various applications and practices, it is not possible to reach all of these objectives. A coefficient 

diagram method is a novel approach for design controllers. CDM control technique, introduced by Manabe in 

1991 [1], is an algebraic method applied to the polynomial loop, where a coefficient diagram is used as a 

criterion for good design. The Coefficient Diagram Method (CDM) is an indirect pole placement method to 

design an appropriate characteristic polynomial [5].  
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The transfer function is specified before the controller's design, and the performance specification is rewritten 

instability index and equivalent time constant. These parameters specify the closed-loop transfer function. Also, 

these parameters are related to the controller parameters algebraically in explicit form. This paper's main 

purpose is the application of the CDM method to proposal a controller for the plant such that the control system 

realizes the wanted performance. For this, a method for short time delays compensation based on 

approximations of the FOPTD [6] is presented. The three-time delay approximations are used and compared: 

Taylor denominator expansions, Taylor numerator, and Padé approximation. The paper is systematized as 

follows: Section 2 provides a modeling turbine of the variable speed wind turbine (VSWT). Section 3 provides a 

mathematical model of the Two-mass system structure. Section 4 describes the control objectives and the 

designs of the control system by CDM. After this, the basic control structure is determined using CDM, a 

feedback controller designed as a MISO problem, and derivation of the controller tuning formulae for the 

FOPTD plant model of the stable processes is given. The three-time delay approximations: Taylor denominator 

(TD) expansions, Taylor numerator (TN), and Padé approximation (PA). In section 5, the effectiveness and 

robustness of the proposed method are demonstrated by simulation results. In the finish, simulation results are 

shown for these controllers. 

II. Modeling turbine physics  

The power of an air mass that flows at speed V through an area A can be expressed as: 

31

2
wP AV                                                                                                       (1) 

Where 
3(kg/ m )  the Air density and ( / )V m s  the Wind speed.  The power in the wind is the total 

obtainable energy per unit of time. The wind's power is transformed into the mechanical–rotational energy of 

the wind turbine rotor, which results in a reduced speed in the air mass. The wind power cannot be extracted 

completely by a wind turbine, as the air mass would be stopped completely in the catching rotor area. This 

would cause a 'congestion' of the cross-sectional area for the following air masses. 

The fraction of power (
mP ) extracted from the available power in the wind ( wP ) by practical turbines is 

expressed by the coefficient of performance, (
pC ). The power extracted (

mP ) can then be expressed as shown 

in equation (2). 

 31
,

2
m pP AV C                                                                                                  (2) 

The value of  ,pC    varies with the wind speed, the turbine blade parameters' rotational speed, the rotor 

pitch angle, and the turbine blade parameters. According to Betz, the theoretical maximum power extracted 
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from the wind cannot exceed 16 27
BetzpC  . The tip speed ratio is a variable that combines the effects of the 

rotational speed and the wind speed. It is defined as the ratio between the rectilinear speed of the turbine: 

R

V


                                                                                                                                            (3) 

The wind turbine rotor performance can also be estimated as a function of the coefficient of torque qC , where 

the torque 
aT  is: 


m

a

P
T                                                                                                               (4) 

qC  can be related to the power coefficient, pC  through the relation: 

( , )
( , )

p

q

C
C

 
 


                                                                                            (5) 

and the aerodynamic torque 
aT , can be expressed as:  

21
( , )

2
a qT ARV C                                                                                         (6) 

Therefore, manipulation of the torque coefficient using λ and β will result in manipulate the power produced by 

the turbine.  

For models pC  as a function of the tip speed ratio and the blade pitch angle   in degrees as: 

21
( )116

( , ) 0.5( 0.4 5)e 0.0068i

p

i

C
   





                                                     (7) 

the parameter 3

1 1 0.035

0.08 1i   
 

 
 defined in [7]. 

The torque coefficient qC  of the wind turbine can be expressed as a function of the tip speed ratio λ  and the 

blade pitch angle of the wind   in [8]. The Power coefficient pC  calculated for different tip speed ratios λ and 

different blade pitch angle β, is presented in Fig.1 and 2. 
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Figure 1: Analytical approximation of ( , )pC    characteristics 

 

Figure 2: Analytical approximation of ( , )qC    characteristics 

The global maximum for the power coefficient is at null pitch angle and it is equal to: 

max
( , 0) 0.4654P optC                                                                                 (8) 

corresponding to an optimal tip speed ratio at null pitch angle equal to 8.2opt  ,[9].                                                                                                                

III. Two-mass model  

The two-mass model representation of the drive system dynamics is shown in Fig.3.A wind turbine's mechanical 

rotational system generally comprises a rotor, low-speed shaft, gearbox, high-speed shaft, and generator rotor 

[10]. 
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Figure 3: Two-mass wind turbine model 

The nominal parameters for the two-mass model in this article are given in Table 1 below 

Table1: Two-mass model Parameters[11] 

Symbol Quantity Value 

lsK
 

Shaft stiffness coefficient 269100 Nm/rad 

lsB
 

Shaft damping coefficient 9500 Nm/rad/s 

rB
 

Rotor damping coefficient 27.36 Nm/rad/s 

gB
 

Generator damping coefficient 0.2 Nm/rad/s 

rJ
 

Rotor inertia 325000 Kg. 
2m  

gJ
 

Generator inertia 34.4 Kg. 
2m  

gn
 

Gearbox Ration 43.165 

The state equation of two-mass resonant system is as follows [12]. The rotor inertia 
rJ

 
is driven at a speed 

r  

by the aerodynamic torque 
aT . Its dynamics are described by: 

a lsr r
r

r r r

T Td B

dt J J J


                                                                                      (9) 

The generator inertia gJ
 
is driven by the high-speed shaft and braked by the electromagnetic torque gT . Its 

dynamics are described by: 

g g ghs
g

g g g

d T BT

dt J J J


                                                                                   (10) 
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Where, Br  is the rotor viscous damping coefficient, and gB  is the generator viscous damping coefficient. The 

low-speed shaft torque lsT  acts as a braking torque on the rotor. Indeed, it results from stiffness lsK  and 

damping lsB efforts due to the difference between r  and ls is given by[13]: 

( ) ( )ls ls r ls ls r lsT K B                                                                           (11) 

The torque and the speed of this shaft are transmitted via the gearbox with a rate ratio gn  . For an ideal 

gearbox, one has: 

g gls
g

hs ls ls

T
n

T

 

 
                                                                                           (12) 

From (11) to (12): 

2

2

1
( ) ( ) (K )

r g n ls gls ls r ls ls
ls r ls ls ls g a g

r r g g g g r g g

J J n B BdT B B B B
K B T T T

dt J J J n n J J J n
 


             (13) 

The linear drive train model developed from (10-13) can be expressed in the state space form as [14]: 

X AX BU

Y CX

  




                                                                                                        (14) 

2

2

1
0

1
( ) ( )

1
0

r

r r

r g g ls gls r
ls ls ls

r r g g g g

g

g g g

B

J J

J J n B BB B
A K B K

J J J n n J

B

J n J

 
  

 
 
     
 
 
 


 
 

,  

1
0 0

0

1
0 0

r

ls ls

r g g

g

J

B B
B

J J n

J

 
 
 
 
 
 
 
 
  

         (15) 

3,3)
C I  ,   0

T

a gU T T   
       and       

T

r ls gX T    
                                  (16) 

and the block diagram representation of the two-mass system is shows in Fig.4. Let a two-input and three-output 

process be represented by the block diagram shown in Fig.5 for which the transfer function [14]is: 
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Figure 4: Block diagram of the two-mass mechanical system 

 

Figure 5: Two-input and three-output of the system 

where: 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( ) ( ) ( )

r ra rg

a

ls lsa lsg

g

g ga gg

s H s H s
T s

T s H s H s
T s

s H s H s





   
    

     
       

                                                               (17) 

The rotor speed, shaft torque and generator speed are: 

2

2 2 2 2

G ( )r g s g g s g r

r a g

g g s r s g g g s r s g

n G G n G G G
T T

n n G G G G n n G G G G



 

   
                                            (18) 

2

2 2 2 2

g r s g s g

ls a g

g g s r s g g g s r s g

n G G n G G
T T T

n n G G G G n n G G G G
 

   
                                            (19) 

2

2 2 2 2

G (1 )g s g r g g s r

g a g

g g s r s g g g s r s g

n G G G n G G
T T

n n G G G G n n G G G G



 

   
                                            (20) 

Transfer functions of the rotor, shaft and generator are:  
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G 1r r rJ s B  ,     G s ls lsB s K s  ,       G 1g g gJ s B                                    (21) 

Using: 

2 2 2

2

0

( )( ) 1
( )

( ) ( )
g

g g g g ls lsr
ra

a g g rT

n J s n B B s Ks
H s

T s n J J s





  
 


                                      (22) 

2

0

(B s K )(J s B )( ) 1
( )

( ) ( )
g

ls ls g gls
lsa

a g g rT

T s
H s

T s n J J s


 
 


                                                 (23) 

2

0

( ) n (B s K )1
( )

( ) ( )
g

g g ls ls

ga

a g g rT

s
H s

T s n J J s






 


                                                            (24) 

where the characteristic equation of the open loop system is given as: 

2 2 2 2 2

3 2

2 2 2

(n J J ) B (n B B ) n (n B B )
( ) ( )s ( )s

g g ls ls g g r ls g g r g r g ls g g rr ls

r g g g g r g g r

n B B K B B KB B
s s

J n J n J J n J J

     
             (25) 

Since their effect on resonance is negligible 0rB   and 0gB  ; so that, the resonance frequency R , anti-

resonance frequency A ,
 
and the damping ratio  of the drive chain are [5]: 

2

1 1
( )R ls

r g g

K
J J n

   ,         2

ls
A

g g

K

J n
  ,         2

1 1

2

ls

r g gls

B

J J nK
                      (26) 

The dominant eigenvalues for the open-loop system are 
1 0.005814P    and 2,3 0.0912 2.24P    , The 

resonant frequency is 2.242 /R rad s   and the anti-resonant frequency is 2.05 /A rad s  , The damping 

ratio of the drive chain is 0.0396  . It can be seen that the system is stable, then all of the eigenvalues have 

negative real parts. The response frequency of transfer functions relative to rotor torque is shown in Fig.6. [5]: 

Displays the frequency response characteristics of the two-mass resonance model from the rotor speed, shaft 

torque and generator speed. The peak point of the mechanical resonance can be perceived in this figure. It is 

therefore essential to concept the controller design method such that it reduces this resonance peak gain. 
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Figure 6: The response frequency of transfer function relative to aerodynamic torque rotor 

IV. CDM Design Procedure 

The concept of CDM was first proposed by Manabe (1991). The Coefficient Diagram Method (CDM) is an 

indirect pole placement method to design an appropriate characteristic polynomial [5]. It is very easy to strategy 

a controller under the conditions of stability, time-domain performance, and robustness. The basic block 

diagram of the CDM control system is shown in Fig.7a. In this figure, y is the output, r is the reference input 

signal, u is the control signal, and d is the external disturbance signal. The transfer function of the plant 

1( ) ( ) ( )G s N s D s where  N s  and  D s  are the numerator and the denominator of the  G s , 

respectively  A s ,  B s , and  F s  are the polynomials syndicated with the CDM controller. 

 

Figure 7a:   A block diagram of CDM control system 

The output of the controlled system is given by: 

 P ( ) ( ) r ( ) ( )s y N s F s A s N s d                                                                         (27) 

Where the characteristic polynomial 𝑃(𝑠) is given as the following form [1]. 

( ) ( ) ( ) ( ) ( )P s A s D s B s N s                                                                                 (28) 
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Approximately mathematical relations extensively used in CDM will be introduced henceforth. These relations 

will be used in later section. In CDM, the transient response performance specifications were specified by 

means of two parameters such as i  and  . These parameters were used to specify the closed loop transfer 

function. As will be explained later, stabi1ity index i , equivalent time constant and stability limit indices 
*

i  

are given by[15]: 

2

1 1i i i ia a a   ,             1... 1i n                                                                       (29) 

1 0a a                                                                                                                (30) 

        
*

1 11 1i i i     ,    1... 1i n  ,      where n    and 0                             (31)                                                                                                                                                   

From Eq.29-31, the coefficients ia  can be written as: 

0 01

1

i

i ii
j

i j

j

a a Z a









 



    where  
0

P( )
n

i

i

i

s a s


                                                       (32) 

Using the relations in Equation (29,30, and 31), it is possible to formulate the characteristic polynomial 

arg ( )t etP s  in terms of the design parameters τ and i  as follows:   

1

0

2 1

1
( ) ( )( ) 1

in
i

j
i J i j

P s a s s 




  

   
    

    
                                                                (33) 

where: arg ( )t etP s  - is the Target Characteristic Polynomial.  

Now, the problem is here how to select the appropriate controller parameters in terms of stability, minimum 

overshoot and robustness. Manabe proposed that 
1  should equal to 2.5, 

2 ,  and 
3  should be equal to 2 to 

ensure the stability of fourth-order closed-loop systems [16]. 

V. CDM Control structure 

CDM used a simultaneous approach to obtain the controller and closed-loop transfer function, and it uses to 

design a simple polynomial controller for stable first Order Plus Time Delay (FOPTD) systems with an external 

disturbance. In this paper, the process to be controlled is represented or assumed to be approximated as a 

FOPTD model whose transfer function is given by: 
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( ) exp( )
1

K
G s Ls

Ts
 


                                                                                  (34) 

Where: 

K – Gain coefficient: the ultimate value of the response (new steady state) for a unit step change in the input. 

T – Time constant: measure of time wanted for the process to adjust to a change in the input 

L – Delay: the time at which output of the system starts to change minus the time at which the input step change 

was made [17]. 

Approximate a high order open loop system using FOPDT. If the system model cannot be physically derived, 

experiments can be performed to extract the parameters for the approximate model (34). For instance, if the step 

response of the plant model can be measured through an experiment, from which the parameters of k, L, and T 

can be extracted by the simple approach shown[18]. The CDM control system was designed by approximating 

the time delay using Taylor Numerator (TN) expansion, Taylor Denominator (TD) expansion, and Pade 

Approximation (PA) techniques. The experimental identification of this model using many techniques is well 

described in [19]. The term 𝑒−𝐿𝑠 which represents the time delay in Eq.34 is approximated by: 

- The Taylor numerator expansion:        1Lse Ls                                         (35) 

- The Taylor denominator expansion:   
1

1

Lse
Ls

 


                                      (36) 

- The Padé approximation:                   
2

2

Ls Ls
e

Ls

 



                                      (37) 

These approximations can positively be used for the time delay if the ratio of the time delay to the time constant 

is small. The first order approximations are sufficient because their higher number leads to a higher order of a 

controlled system's approximative transfer function and, consequently, to more complex resulting controllers. 

The equivalent linear time-invariant models of Eq.34 are obtained as in Table.2. 

V.1 Determination of the nominal plant and the controller polynomials 

Fig.7b represents the standard block diagram of the control system designed by CDM. It is composed of a plant 

and CDM controller. The transfer function of the plant is thought to be two independent polynomials, one is the 

numerator polynomial 𝑁(𝑠) of degree m, and the other is the denominator polynomial 𝐷(𝑠) of degree n(m<n). 
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Figure 7b: Simulation block diagram for the CDM control system 

The polynomials  A s ,  B s  are given by: 

( )
p

i

i

i

A s l s ,                        
0

( )
q

i

i

i

B s k s


                                                       (38) 

where the condition p q  must be satisfied for practical realization. In this paper, the controller 

Table2: Equivalent transfer Functions for Eq. 34 

 Equivalent transfer Functions of FOPTD model 

TN exp.                    
1

sn

KLs K
G

Ts

 



 

TD exp. 
2 (L T)s 1

sd

K
G

TLs


  
 

Padé 
2

2

(L 2T)s 2
sp

KLs K
G

TLs

 


  
 

polynomials are chosen for the step disturbance signal. The controller polynomials then have forms: 

1( )A s l s                                                                                           (39a) 

1 0( )B s K s K                                                                                   (39b) 

for the numerator approximation and; 

2

2 1( )A s l s l s                                                                                     (40a)
 

2

2 1 0( )B s K s K s K                                                                           (40b)
 

For the denominator and Padé approximations. 
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V.2 Computation of the coefficients of the controller polynomials during the design 

The pole-placement method is made use of in the calculation of the controller polynomials in CDM. A feedback 

controller is selected by pole placement technique, and then, a feedforward controller is determined to match the 

steady-state gain of a closed-loop system. According to this, the controller polynomials which are determined by 

Eq. 39 and 40 are replaced in Eq. 28. This way a polynomial depending on the parameters 𝑘𝑖 and  𝑙𝑖  are 

obtained. Then, a target characteristic polynomial 𝑃𝑡𝑎𝑟𝑔𝑒𝑡(𝑠) is determined by placing the design parameters 

into Eq. 33. Equating these two polynomials, 

arg

0

( ) ( ) ( ) ( ) ( )
n

i

t et i

i

P s A s D s B s N s a s


                                                  (41) 

which is known to be a Diophantine equation. Solving this equation, the following explicit formulae are found 

for the coefficients of the controller polynomials 𝐴(𝑠) and 𝐵(𝑠) in Eq. 39 and 40. 

The parameters of Eqs. 39a and 40b can be described as:  

Table3: coefficients of the controller polynomials A( )s  and B( )s  

Coefficients of 

the control 

polynomials 

A(s) and B(s) 

For the 

numerator 

approximation 

 

For the 

denominator 

approximation 

For the padé approximation 

K0 
1

K
  

1

K
  

0.5

K
  

K1 
τ + L − 𝑙1

K
 

τ − 𝑙1
K

 
𝜏 + 0.5𝐿 − 2𝑙1

𝐾
 

K2  
Z2−(T+L)𝑙1−𝑙2

K
  

𝑇𝐿𝑙1−2(𝑇+𝐿)𝑙2−𝑍4

𝐾𝐿
  

𝑙1 
Z2τ

2+Lτ+L2
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F(s) which is commonly defined as pre-filter element is chosen as: 

0
( ) ( ) ( ) (0) (0)

s
F s P s N s P N


                                                                   (42) 

This way, the steady-state error in the closed loop system performance is reduced to zero.  

VI. controller applied 

design considerations of the proposed Controller by the Coefficient Diagram Method are given, Fig.8, 9 and 10 

show a close-loop with 𝐺𝑓(𝑠) = 𝐹(𝑠) 𝐵(𝑠)⁄   and 𝐺𝑣(𝑠) = 𝐵(𝑠) 𝐴(𝑠)⁄  controllers. The block diagram of rotor 

speed, shaft torque and generator speed are represented as: 
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Figure 8: Block diagram of rotor speed system with ( )fG s  and ( )vG s controllers 

 

Figure 9: Block diagram of shaft torque system with ( )fG s  and ( )vG s controllers 

 

Figure 10: Block diagram of generator speed system with ( )fG s  and ( )vG s controllers 

The closed-loop transfer function from the command C  to the rotor speed,  the shaft torque and the generator 

speed are [20]: 
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
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                                                                         (43)
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( ) 1 G ( ) ( )
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                                                                         (44)
 

0
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( ) 1 (s) ( )
g

g f v ga

C v gaT

s G s G s H s

s G H s









                                                                         (45)
 

The characteristic equation of Closed loop system is obtained by using the following expression:                                                                                                                    

2N(s) ( ( ) ( ))r g s gG n G s G s                                                                                 (46)
 

2 2( ) ( ) ( ) ( ) ( )g g s r s gD s n n G s G s G s G s                                                                (47)
 

VII. Simulation results  

In this unit, we verify the validity of the proposed method. MATLAB executes all simulations. A two-mass 

wind turbine model is given to illustrate the CDM's performance in the design of a simple controller for a time-

delay system. The CDM control system is designed using three approximations for the various ratio between the 

time delay and the time constant of the FOPTD system.The open-loop step response is shown in Fig.11. The 

graph shows three parameters, L the delay time, T the time constant and K the gain. These parameters are found 

by drawing a tangent to the step response at its point of inflection, followed by noticing its intersections with the 

time axis and the stable state value. From this step response, the parameters of the approximate FOPDT model 

for rotor speed are k = 0.0025, L = 0.1, and T = 1000s. 

 

Figure 11: open-loop step response of rotor speed for the approximate FOPDT 

In this section, rotor speed, shaft torque and generator speed are given in order to illustrate the performance of 

the CDM in the design of simple controllers for time-delay systems. The CDM control systems are delineated 
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using three approximations for the various ratio between the time delay and the time constant of the FOPTD 

system. The effect of stability indices and equivalent time constant on the system performance is investigated 

(Fig.12, 14, 16). 

 

Figure 12: Step response of rotor speed for the TN, TD, and PAD approximations 

The unit step response of the wind turbine the rotor speed control system is shown in Fig 12. Time-domain 

specifications are observed from the response graphs and tabulated in Table 4. We observed less rise time and 

less settling time with TD approximation than TN and Padé approximations and a no overshoot. 

 

Figure 13: Amplitude and phase responses of ( )raH s  and the TN, TD, and PAD approximations 

The rotor speed 𝐻𝑟𝑎(𝑠) is illustrated in Fig.13. The presented method's effectiveness is assured by the 

characteristic shown in this figure because the resonance peak is reduced considerably. 

Table 4: Comparison between TN, TD and Padé 

Time Domain Without controller TN exp TD exp Padé 

Settling Time (sec) 3.8053e+03 8.4177 4.4453 6.3201 

Rise Time (sec) 2.1373e+03 4.5846 2.4800 3.9824 

Overshoot (%) 0 0 0 0 
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Figure 14: Step response of shaft torque for the TN, TD, and PAD approximations 

The unit step response of the wind turbine the shaft torque control system is shown in Fig.14. Time-domain 

specifications are observed from the response graphs and tabulated in Table.5. We observed less rise time and 

less settling time with TD approximation than TN and Padé approximations and a no overshoot. 

 

Figure 15: Amplitude and phase responses of ( )lsaH s  and the TN, TD, and PAD approximations 

The shaft torque  𝐻𝑙𝑠𝑎(𝑠) is illustrated in Fig.15. The presented method's effectiveness is assured by the 

characteristic shown in this figure because the resonance peak is reduced considerably. 

Table 5: Comparison between TN, TD and Padé 

Time Domain Without controller TN exp TD exp Padé 

Settling Time (sec) 3.6161e+03 9.7254 4.5911 5.8228 

Rise Time (sec) 2.0500e+03 5.3920 2.5151 3.2285 

Overshoot (%) 0 0 0 0 
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Figure 16: Step response of Generator speed the TN, TD, and PAD approximations 

The unit step response of the wind turbine the generator speed control system is shown in Fig.16. Time-domain 

specifications are observed from the response graphs and tabulated in Table.6. We observed less rise time and 

less settling time with TD approximation than TN and Padé approximations and a very little overshoot. 

 

Figure 17: Amplitude and phase responses of ( )gaH s  and the TN, TD, and PAD approximations 

The generator speed 𝐻𝑔𝑎(𝑠) is illustrated in Fig.17. The presented method's effectiveness is assured by the 

characteristic shown in this figure because the resonance peak is reduced considerably. 

Table 6: Comparison between TN, TD and Padé 

Time Domain Without controller TN exp TD exp Padé 

Settling Time (sec) 3.8053e+03 58.0168 4.5911 42.9715 

Rise Time (sec) 2.1373e+03 7.1707 2.5151 15.2644 

Overshoot (%) 0 32.6847 0 4.3489 
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VIII. Conclusion 

The coefficient diagram method design technique used to design a two-mass model wind turbine controller 

gives very stable and robust control systems, small overshoot system responses, short stabilization time, and 

good robustness performance about mismatches between the actual system and the design model. As a result, 

for the two-mass system, it is observed that the designed polynomial CDM controller exhibits better results for 

the TD approximation followed by the Padé approximation. However, the TN approximation is generally not 

recommended for successful performance. 
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