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Abstract 

The main aim of this study was to forecast the monthly price volatility of Teff in Ethiopia. The dataset was 

obtained from the central statistical agency which indexes from January 2014 to June 2021. Thus, ARIMA 

family models for the mean equation and GARCH family models for the variance equation were employed to 

forecast the monthly price volatility of Teff. Among the GARCH family models considered in this study, the 

ARIMA (1,1, 1)-EGARCH (1, 1) model with student t-distributional assumption of residuals was found to be a 

better fit for the price volatility of Teff. The exchange rate, food inflation rate, non-food inflation rate and fuel 

oil were found to have a statistically significant effect on the average monthly price volatility of Teff. The 

asymmetric term was found to be positive and statistically significant in the EGARCH (1, 1) volatility model for 

Teff. This is an indication that the unanticipated increase in domestic prices had a larger impact on domestic 

price volatility than the unanticipated decrease in the domestic price of Teff. Finally, various forecast accuracy 

measurement statistics indicate that the estimated ARIMA (1,1,1) model is good enough to describe the 

domestic price of Teff. Moreover, the out-of-sample forecast indicates that the domestic price of Teff is 

increasing. The in-sample forecast using the best-fit asymmetric model, which is the EGARCH (1, 1) model, 

indicates that the domestic price volatility of Teff remained at almost a constant level around the beginning and 

end of the study. But it increased steadily at an increasing rate from December 2019 to January 2021, then 

dropped sharply at an increasing rate till March 2021. 
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1.  Introduction  

Natural and man-made disasters, such as earthquakes, war, and the Coronavirus (COVID 19), are extremely 

likely to price volatility of Teff in Ethiopia. Disruptions in the supply chain are defined as high-impact, low-

frequency occurrences that alter the supply chain's structural architecture and have a substantial influence on 

performance [1, 7]. Ripple effects are the consequences of a disturbance propagating across a supply chain. 

COVID 19 will have short to long-term economic consequences in Ethiopia. Forecasting agricultural 

commodity prices is critical for policymakers as well as different stakeholders in the agricultural commodity 

marketing chain, from farmers to consumers [9,10, 16, 17]. The majority of agricultural price series may be 

modeled as time series data, in which data is gathered at regular intervals across time. The Box Jenkins' 

autoregressive integrated moving average (ARIMA) approach dominated time-series forecasting for a long time, 

until the necessity to cope with volatile data became apparent. Surprisingly, many agricultural commodity price 

statistics are noisy and erratic by nature. This is due to the fact that agricultural commodity prices react quickly 

to actual and perceived changes in supply and demand circumstances, and weather-related fluctuations in farm 

productivity exacerbate the problem. Asymmetric occurrences may also occur in price series, which tend to 

behave differently when the economy enters or exits a recession. Volatility is a rapid and unexpected increase or 

decrease in a series that can irritate investors. It is a well-known fact that price volatility may destabilize farm 

revenue and prevent farmers from making optimal investments and resource use [15]. This has the potential to 

divert much-needed resources away from agriculture. When a few error-terms are bigger than the rest and are 

responsible for the series' distinctive behavior, the series is said to be volatile; this phenomenon is known as 

heteroskedasticity. Reference [4, 5] extended the model as the Generalized ARCH (GARCH) model for 

parsimonious representation of ARCH. The conditional variance in the GARCH model is likewise a linear 

function of its own lags. This model, like ARCH, is a weighted average of past squared residuals, but it has 

decreasing weights that never reach zero. The GARCH models are frequently utilized for economic and 

financial series modeling and forecasting. Further progress was achieved by combining the AR specification 

with the ARCH/GARCH models, which proved to be more effective in forecasting volatility. Non-linear models 

have been widely employed by numerous academics for more than two decades, who have discovered diverse 

combinations of AR-GARCH models that are suited for varied scenarios [12]. In time-series forecasting, 

however, the GARCH (1, 1) model is the most commonly used GARCH formulation. Various time-series have 

revealed both symmetric and asymmetric trends in recent years. The GARCH model has been shown to be 

somewhat inefficient in modeling and forecasting such series due to its nature of dealing only with size rather 

than the positivity or negativity of the shocks. As a result, the need for expansion of the GARCH family model 

was felt, and Nelson was the first to respond. Therefore, this study is motivated to forecast prices volatility of 

Teff in Ethiopia. 

2. Methods and Materials  

2.1. Sources of Dataset    

Data for the study were obtained from Central statistical agency (CSA) and national bank of Ethiopia (NBE). 

Period from Jan 2014 to June 2021 were used for estimation process. The price volatility of Teff, exchange rate 

and fuel oil price data are obtained from NBE and general food inflation and general non-food inflation data are 



International Journal of Applied Sciences: Current and Future Research Trends (IJASCFRT) (2021) Volume  9, No  1, pp 1-21 

3 
 

obtained from CSA. The variables of interest in this study are price volatility of Teff which is to be used as a 

dependent variable, and fuel oil price, exchange rate general food inflation and general non-food inflation are 

exogenous variables used to model and forecast the volatility of the price of Teff (general price inflation) in 

Ethiopia. 

2.2. Model Specification 

Time series models are mainly concerned with analysis (estimation) and forecasting of different equations 

concerning stochastic components since time series is a sequence of real random variables (yt ) defined on the 

same probability space. Moreover, it is an example of a discrete-time stochastic process [14]. In this study, some 

of the time series models such as conditional mean and conditional variance (GARCH family) models are 

applied to model and forecast price inflation volatility in Ethiopia.  

2.2.1. Stationarity and Unit-Root Problem 

Generally the concept of stationarity can be summarized by the following conditions. A time series ty  is said to 

be stationary if: 
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The assumption of stationarity is somewhat unrealistic for most macroeconomic variables. A non-stationary 

process arises when at least one of the conditions for stationarity does not hold. Let us consider an 

autoregressive process of order one (AR (1) process):  

ttt yy  += −1                                                                                                    4 

Where t denotes a serially uncorrelated white noise error term with a mean of zero and a constant variance. 

Non-stationarity can originate from various sources but the most important one is the presence of so-called “unit 

roots”. Equation (4) is said to be a unit root process when 1=  

Let pt, t= 1, 2, 3… be the price of a commodity at time period t (t in days, months, etc). Instead of analyzing pt, 

which often displays unit-root behavior and thus cannot be modeled as stationary, we often analyze log returns 

on pt [11]: 
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The series tY  log- return series, displays many of the typical characteristics in financial time series such as 

volatility, clustering and leptokurtosis. 

2.2.2. The Mean Models 

2.2.2.1. The Autoregressive Moving Average (ARMA) 

In general, an ARMA model is denoted by ARMA (p, q), where p and q are the orders of autoregressive and 

moving average components, respectively. 

ARMA (p, q) mean model [5] is given by: 

 qttptptt YYKY +++++++= −−− ............ 1111                                                 6
 

Where K is a constant and 𝜀𝑡−𝑘 (k=1, 2…q) are the values of the previous random shock. 

2.2.2.2. The Autoregressive Integrated Moving Average (ARIMA) Model 

The ARIMA model was introduced by Box and Jenkins (hence also known as Box-Jenkins model) in 1960s for 

forecasting a variable. ARIMA models consist of unit-root non-stationary time series which can be made 

stationary by the order of integration d. The general form of ARIMA (p, d, q) is written as: 

tqtp
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2.2.3. The Variance Models  

The Box-Jenkins time series model such as Autoregressive (AR), Moving Average (MA) and ARMA are often 

very useful in modeling general time series data. However, they all require the assumption of homoscedasticity 

(or constant variance) for the error term in the model. But this may not be appropriate when dealing with some 

special characteristics of financial and agricultural price time series. This led to the introduction of 

Autoregressive Conditional Heteroskedasticity (ARCH) model which was proposed by [8]. After identifying the 

presence of ARCH effects, separate GARCH, TGARCH and EGARCH models have been employed in this 

study to investigate the pattern of price volatility and its determinants for cereal crops (wheat and barley) and 

pulse seeds (pea and bean) with joint estimation of a mean and a conditional variance equation. 

2.2.3.1. The Autoregressive Conditional Heteroskedasticity (ARCH) model  

The ARCH model for the variance of the errors, denoted by ARCH (Q), was proposed by Engle (1982). The 

conditional variance is given by: 



International Journal of Applied Sciences: Current and Future Research Trends (IJASCFRT) (2021) Volume  9, No  1, pp 1-21 

5 
 

jt

p

j

jot

ptptot

ttt u

−

=

−−

+=

+++=

=

2

1

2

2
1

2

1

2
...







 

Where, tu  is IID normal residual with mean zero and unit variance and 
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2.2.3.2. The Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model 

In order to capture possible asymmetry exhibited by financial time series, a new class of models, termed the 

asymmetric ARCH models, was introduced. The most popular model proposed to capture the asymmetric 

effects is exponential GARCH, or EGARCH model. The ARMA(p, q)-EGARCH (P,Q) model is given as: 
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In contrast to the GARCH model, no restrictions need to be imposed on the model parameters since log 

transformed conditional variance overcomes the positivity constraint of coefficients in EGARCH models. Note 

that the left hand side is the log of the conditional variance. This implies that the leverage effect is exponential, 

rather than quadratic and that forecasts of the conditional variance are guaranteed to be non-negative. In this 

model specification, p ,...,, 21  are the GARCH parameters that measure the impact of past volatility on 

the current volatility. 

2.2.3.3. The Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH) model 
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The number of possible conditional volatility formulations is vast. The threshold GARCH, or TGARCH (P,Q), 

model is one of the widely used models introduced by Zakeian (1990) and Glosten and his colleagues (1993). 

The TGARCH model with mean and conditional variance equations is given as: 
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where 1=−itm  if 0−it  and 0=−itm  otherwise in (equation 13). The TGARCH model allows a response 

of volatility to news with different coefficients for good and bad news. That is, depending on whether it−  is 

above or below the threshold value of zero, it−  has different effects on the conditional variance, 
2

t  : when 

it−  is positive, the total effects are given by iti −  when it−  is negative, the total effects are given by 

itii −+  )( . So, one would expect i  to be positive for bad news to have larger impacts. The presence of 

leverage effects can be tested by the hypothesis that 0=i . The impact is asymmetric if 0i . In this study, 

food inflation rate, non-food inflation rate, fuel oil price and exchange rate were introduced into the conditional 

variance equation as independent variables in order to determine the impact of these variables on the volatility 

of average monthly price returns under consideration. The conditional variance equation of GARCH (P,Q) with 

explanatory variables for each cereal crops and pulse seeds is given by: 

tjtjitit X'22
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Where, ( )kttt xxX ,...,1=  is a vector of explanatory variables and ( )'1,..., k =  is a vector of regression 

coefficients of the explanatory variables. Assuming the presence of asymmetric effect on the GARCH family 

model, the conditional variance equations for EGARCH (P,Q) and TGARCH(P,Q) with explanatory variables 

are given by: 
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Assumptions of the Models 

i. The expected value of the error term is zero, i.e. 0)( =tE  . 

ii. The variance of the error terms is conditionally hetroskedastic. 
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iii. Error terms are independent having normal or student-t or GED distribution with mean zero and 

variance 
2

t   

iv. There is no serial autocorrelation among successive error terms. 

v. No severe Multicollinearity exists among explanatory variables. 

2.3. Procedures for Model Building 

2.3.1. Testing for the Presence of Unit Root 

The widely used unit-root tests are Augmented Dickey Fuller test [6, 18]. Once the presence of unit root (non-

stationarity) is confirmed, the series needs to be differenced to achieve stationarity. 

2.3.1.1. The Dickey Fuller Test 

The simplest form of the Dickey-Fuller [6] test amounts to estimating 

ttt yy  += −1                                                                                              (16)
 

One could use a t- test to test the hypothesis 1=  (unit root) against 1  alternatively, one can rearrange 

the model as follows: 

ttt yy  +−= )1(
                                                                                        (17)

 

The simple Dickey-Fuller unit root test described above is valid only if the series is an AR (1) process. If the 

series is correlated at higher order lags, the assumption of white noise disturbances is violated. The Augmented 

Dickey-Fuller test constructs a parametric correction for higher order correlation by assuming that the series 

follows an AR (p ) process and adding lagged difference terms of the dependent variable to the right-hand side 

of the test regression. The ADF test is comparable with the simple DF test, but is augmented by adding lagged 

values of the first difference of the dependent variable as additional regressors which are required to account for 

possible occurrence of autocorrelation. Consider the AR (p) model: 
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The presence of a unit root is tested in a similar manner as described above. If the null hypothesis 0: =oH  

is not rejected, then we need to difference the data to make it stationary or we need to put a time trend in the 

regression model to correct for the variables’ deterministic trend. 

2.3.1.2. The Phillips and Perron Test 

An important assumption of the DF test is that the error terms εt are independently and identically distributed. 
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The ADF test adjusts the DF test to take care of possible serial correlation in the error terms by adding lagged 

difference terms of the dependent variable. Phillips and Perron use nonparametric statistical methods to take 

care of the serial correlation in the error terms without adding lagged difference terms. Examining AC patterns 

within a time series is an important step in many statistical analyses. The autocorrelation coefficient is the 

correlation between ty  and kty −  (separated by k periods apart) and the formal expression at time lag k is: 
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Where, ),cov( ktt yy − is the auto-covariance between ty and kty − for k= 0, 1, 2 … The ACF is a listing or 

graph of the sample autocorrelations at lag k = 0, 1, 2… The partial autocorrelation at lag k is the correlation 

between ty  and kty −  after removing the effect of 1,... +−ktt yy  and the formal expression is given as: 
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ARCH effects in the residuals from mean equation. In case of ARCH effects, ACFs of squared residuals should 

dies down slowly (i.e. ACFs of squared residuals should not be white noise). The ACFs are also used for 

checking model adequacy in fitted GARCH (p, q) family process, i.e. the ACFs of standardized residuals should 

be indicative of a white noise process if the model is adequate. 

2.3.2. Testing ARCH Effects 

The presence of ARCH effect (whether or not volatility varies over time) has to be tested through the squared 

residuals of the series[20]. According to [20], there are two available methods to test for ARCH effects. 

2.3.2.1. Ljung-Box Test 

It was developed by [6] and modified by Ljung and Box (1978) and tests the joint significances of serial 

correlation in the standardized and squared standardized residuals for the first k lags instead of testing individual 

significance. They suggested testing the hypothesis: 

0....: 21 ==== koH   (the ACF for the first k lags of the squared residuals series is zero) 

differentsoneleastatH a ':   

They suggested the statistic: 
= −

−=
k

j

j

jn

d
nnkQ

1

2

)2()(  

Where n denotes the length of the series after any differencing and dj denotes the squared residual from equation 

(2). They showed that under the null hypothesis Q(k) is asymptotically distributed as chi-square with (k-p-q) 

degree of freedom, where k is the maximum lag considered, p and q are the order of the AR and MA from 

equation (2), respectively. 

2.3.2.2. Lagrange Multiplier (LM) Test 

This test was suggested by [8] and used to test the significance of serial correlation in the squared residuals for 

the first q lags. The steps to derive the test statistic for LM test are: 

 Estimate the mean equation ε, ε* 

 Obtain the residuals 

 Then regress current squared residual on lagged squared residuals and a constant 

qtqtot −− +++= 2
1

2

1

2 ˆ...ˆˆ   

The null hypothesis is that, 0...1 ==== qo   
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The test statistic n*R2 is distributed as chi-square with q degrees of freedom, where R2 is the coefficient of 

determination from equation (15) and n is number of observations. The rejection of the null hypothesis indicates 

the presence of ARCH effects. It is important to apply the LM test on the residuals from the mean equation 

ARMA model (not GARCH model). Also one does not test directly for GARCH effects; if ARCH effect exists, 

GARCH model can also be considered. 

Test of Normality 

When dealing with GARCH family models, the data is first tested for normality (i.e. whether the returns follow 

a normal distribution). In statistics, the JB test is a test of departure from normality based on the sample kurtosis 

and Skweness. The null hypothesis states that the observations come from a normal distribution. The test 

statistic is: 

(23) 

 

Where n is the number of observations, S is the sample Skweness and K is the sample kurtosis. Under the null 

hypothesis, the Jarque-Bera statistic is distributed as chi-square distribution with two degrees of freedom. 

2.3.3. Model Order Selection in GARCH Family Model 

For checking model adequacy in fitted GARCH (p, q) family process, The ACFs can be used i.e. the ACFs of 

standardized residuals should behave as a white noise process if the model is adequate for the data. Since 

GARCH models can be treated as ARMA models for squared residuals, traditional model selection criteria such 

as the Akaike information criterion and the Schwartz Bayesian information criterion (SBIC). After selecting 

appropriate lag order, the final models can be selected using information criteria’s or penalty function statistics 

such as Akaike Information Criterion or Bayesian Information Criterion. The AIC and BIC are a measure of the 

goodness of fit of an estimated statistical model. After ranking competing models according to their AIC or BIC, 

the one having the lowest information criterion value can be selected as the best model among several models 

with similar distributional assumptions. These information criterion measures a model by how close its fitted 

values tend to be to the true values, in terms of a certain expected value.   The information criterion finds the 

model that best fits the data with a minimum of free parameters but also includes a penalty that is an increasing 

function of the number of estimated parameters. Moreover, forecast accuracy measure statistics among the 

competing candidate models could also help in making a decision. Minimum of free parameters but also 

includes a penalty that is an increasing function of the number of estimated parameters. This penalty discourages 

over fitting. In the general case, the AIC and BIC take the form as shown below [20]. The formal expressions 

for the above criteria in terms of the log- likelihood are: 
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(24)  

                                                                                                                                    (25) 

Where n = number of observations 

K = number of parameters estimated 

L = value of the likelihood function ))(log( 2L  

2.3.4. Model Adequacy Checking 

After a GARCH family model has been fit to the data, the adequacy of the fit has been evaluated using a number 

of graphical and statistical diagnostics. 

3. Results and Discussion 

The data in this study consist of monthly price volatility of Teff , monthly food consumer price index, non-food 

consumer price index, monthly fuel oil price (in US dollar) and monthly exchange rate (in birr against US 

dollar) in Ethiopia for the period spanning from January 2014 to June 2021 

3.1. Test for Stationarity 

 

Figure 1: Time plot of monthly price of Teff at level 

Source: author’s estimation using Eviews-8  
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model. The Stationarity of each series can be tested using the Augmented Dickey-Fuller test and the Phillips-

Perron test. The results of ADF and PP tests with intercept and trend both at level and at first difference for the 

series are presented in Tables 2. Test results presented in Table 2 indicate that the null hypothesis that the series 

at levels contain unit root could not be rejected for the price volatility of Teff. The graphical description of the 

trend of average monthly domestic price of Teff and its returns are as shown in figure-1 below. From the figure 

it can be observed that average monthly domestic price of Teff shows increasing pattern followed by a period 

where price is decreased up to the end of the forecasting periods under consideration. 

The absolute return series were constructed for monthly price of Teff in order to examine the presence of 

volatility in the series. As can be seen from Figure-2, periods of high volatility is followed by periods of high 

volatility and periods of low volatility is followed by periods of low volatility for the series. 

 

Figure 2: Time plot of monthly price of Teff at first difference 

If a time series data is non-stationary, it is necessary to look for possible transformations that might induce 

Stationarity. In practice, researchers usually transform financial data series into return forms. Table 1 

summarizes the unit root test of the return series for the price volatility of Teff. The table shows that the null 

hypothesis of unit root would be rejected. Hence the return series of the price volatility of Teff are stationary at 

first difference. 

Table 1: ADF and PP Unit root test result the return series of the price volatility of Teff 

Phillips-Perron Test Augmented Dickey-Fuller Test Order of 

 Identification Variables  intercept , with Trend intercept , with Trend 

At level  First difference At level First difference  

Price of Teff   -2.0687 

(0.1204) 

-2.249 

(0.000)* 

-4.185 

(0.216) 

-8.494 

(0.000)* 

I(1) 

Exchange Rate  -12.9555 

(0.120) 

-11.835 

(0.000) 

-13.231 

(0.100) 

-10.735 

(0.000) 

I(1) 

Fuel Oil Price -12.548 

(0.231) 

-12.541 

(0.000) 

-11.641 

(0.211) 

-9.641 

(0.000)* 

I(1) 

Non-Food -8.301 

(0.291) 

-9.411 

(0.000)* 

-10.411 

(0.000)* 

-10.358 

(0.000)* 

I(1) 

Food (stable) -8.1254 

(0.180) 

-7.625 

(0.000)* 

-8.725 

(0.000) 

-8.6255 

(0.000) 

I(1) 
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3.2. Specification Conditional Mean Equation  

In order to model the volatility of the return series, first we need to specify their conditional mean equation, 

since the return for current time will depend on returns in previous periods (autoregressive component) and the 

error terms in current and previous periods (moving average component). To model the conditional mean 

equation for the series the Box-Jenkins modeling approach has been used. The Box-Jenkins modeling approach 

of a stationary time series involves the following four steps: model identification, model estimation, diagnostic 

checking and forecasting. We have seen that the return of domestic price of Teff becomes a stationary time 

series at level. So, the model that we are looking at is ARMA (p, q). Hence we have to identify a good-fit model, 

estimate its parameters, apply diagnostic checking for the residuals and finally achieve our objectives of in-

sample and out-of-sample forecasting of the domestic price of Teff.  In the specification of the mean equation, 

the sample ACF and PACF plots of the stationary series can be used to tentatively identify the order of 

autoregressive terms and/or moving average terms. To specify the conditional mean equation for the series, 

comparison of various AR (p), MA (q) and ARIMA (p, d, q) models are performed and the one with smallest 

information criteria is selected. In this study, AR (0-3) and MA (0-3) were considered since the return series 

show insignificant spikes for all of the lags. Among the various ARIMA models considered, ARIMA (1, 1, 1) 

model possesses minimum AIC and BIC and exhibits no serial correlation. Therefore, ARIMA (1, 1, 1) model is 

the best-fit model for the conditional mean equation for the return series of the price volatility of Teff. The 

maximum likelihood estimation method for monthly return series of price volatility of Teff are summarized in 

Table 2 below. 

Table 2: Parameter estimate of ARIMA (1, 1, 1) model 

Series  Coefficient  Std.error  t-statistic p-value 

Constant 17.98740 11.28299 1.594206 0.0147** 

AR(1) 0.697393 0.080590 8.653640 0.0000* 

MA(1) -1.159182 0.070436 -16.45719 0.0000* 

Note:* and ** indicates significant at 1% and 5% level, respectively 

From Table 2, the estimated parameters of the moving average term and the constant term are statistically 

significant at 5% level of significant. So the equation of the fitted ARIMA model is given by:  

tttt yy  +−+= −− 11 159182.1697393.09874.17  

3.3. Diagnostic checking  

Before we consider the fitted model as a better fit and interpret its findings, it is essential to check whether the 

model is correctly specified, that is, whether the model assumptions are supported by the data. If some key 

model assumptions seem to be violated, then a new model 

should be specified until it provides an adequate fit to the data. The presence of serial correlation in the residuals 
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was tested using the Lagrange Multiplier (LM) and Ljung-Box tests for ARIMA(1,1,1) model. The null 

hypothesis asserts that there is no serial correlation in the residuals up to lag 24. The results of this examination 

are summarized in Table-3. The Breusch–Godfrey serial correlation LM test results in Table 5 provide an 

evidence of absence of serial correlation in the residuals of the mean equation, since the null hypothesis is not 

rejected at 1% level of significance. The Ljung-Box test (Table 5) also indicates that there is no significant serial 

correlation for lags up to 24 for the series. Hence, we can conclude that there is no significant serial correlation 

in the residuals of the mean equation. 

Table 3: Serial Correlation Test 

       
       Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       
             . |**    |       . |**    | 1 0.263 0.263 6.1657 0.113 

      . |*.    |       . | .    | 2 0.096 0.029 6.9931 0.130 

      . | .    |       . | .    | 3 0.005 -0.029 6.9958 0.172 

      . | .    |       . | .    | 4 -0.049 -0.049 7.2130 0.125 

      . | .    |       . | .    | 5 0.009 0.039 7.2208 0.205 

      . | .    |       . | .    | 6 0.020 0.016 7.2569 0.298 

      . |*.    |       . |*.    | 7 0.206 0.208 11.305 0.126 

      . |*.    |       . |*.    | 8 0.176 0.079 14.318 0.174 

      . | .    |       . | .    | 9 0.045 -0.046 14.518 0.105 

      .*| .    |       .*| .    | 10 -0.074 -0.102 15.061 0.130 

      . | .    |       . | .    | 11 -0.050 0.013 15.316 0.168 

      . | .    |       . | .    | 12 -0.052 -0.025 15.592 0.211 

      .*| .    |       . | .    | 13 -0.074 -0.060 16.158 0.241 

      . | .    |       . | .    | 14 -0.031 -0.045 16.259 0.298 

      .*| .    |       .*| .    | 15 -0.073 -0.111 16.835 0.329 

      .*| .    |       . | .    | 16 -0.075 -0.061 17.447 0.357 

      .*| .    |       . | .    | 17 -0.083 -0.013 18.197 0.377 

      .*| .    |       . | .    | 18 -0.078 -0.018 18.878 0.399 

      . | .    |       . | .    | 19 -0.057 -0.026 19.249 0.441 

      .*| .    |       . | .    | 20 -0.086 -0.053 20.092 0.452 

      .*| .    |       . | .    | 21 -0.077 -0.030 20.782 0.472 

      .*| .    |       . | .    | 22 -0.097 -0.040 21.884 0.467 

      .*| .    |       . | .    | 23 -0.070 0.002 22.481 0.491 

      .*| .    |       . | .    | 24 -0.080 -0.037 23.255 0.505 

       
       

Source: author’s estimation using Eviews-8 

3.4. Test of normality of the residuals  
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To investigate whether the residuals of the fitted model in the mean equation are normally distributed or not, the 

Jarque-Bera test has been applied. The results are reported in table 4:  

Table 4: Normality test of residuals from the mean equation 

Variable  Skweness  Kurtosis  Jarque-Bera 

Statistic  

p-value  

Price return series  -0.7011  7.4585 30.351  0.3115  

 

Source: author’s estimation using Eviews-8 

As we can see from Table 4 the Jarque-Bera statistic is insignificant and hence, there is no a significant evidence 

to reject the null hypothesis of normality. This indicates that the residuals of the fitted model are approximately 

normally distributed for the series under consideration. 

3.5. Forecasting of ARIMA (1, 1, 1) model  

One of the fundamental applications of time series analysis or developing a time series model is forecasting. The 

previous discussion has shown that the ARIMA (1, 1, 1) model is a good-fit model to describe the monthly price 

of Teff. In this section we examine the forecasting accuracy of the fitted model and then make in-sample and 

out-of-sample forecast. 

3.5.1. Evaluation of in-sample forecast  

The forecasting performance of a model can be examined by the standardized statistical tools such as root mean 

square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and Theil‟s 

inequality. 

Table 5: In-sample forecast accuracy measures for ARIMA (1, 1, 1) model 

Accuracy measures  Values  

Root Mean Squared Error  0.62381 

Mean Absolute Error  0.041512 

Mean Absolute Percentage Error  361.1380 

Theil Inequality Coefficient  0.031345 

Bias Proportion  0.00112 

Variance Proportion  0.25431 

Covariance Proportion  0.241941 
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Here as we have seen from Table 5 most of the statistics are small. Moreover, the U statistic is 0.031345, which 

is approximated to zero. Besides that the bias and the variance proportion are also close to zero. This indicates 

that the forecasting performance of the model is good. 
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Figure 3: Out-of-sample forecast for ARIMA (1, 1, 1) model 

Source: author’s estimation using Eviews-8  

As we can see from the figure-3 above the forecasting trend of monthly price of Teff shows an increasing 

pattern over the forecasting periods under consideration 

3.6. Test for ARCH effects 

To proceed with volatility modeling, ARCH effects (whether or not volatility varies over time) in the residuals 

from the selected ARMA model should be tested. The approaches for testing heteroskedasticity (ARCH effect) 

were the Lagrange Multiplier (LM) test proposed by [5, 8] test for squared residuals. To proceed with volatility 

modeling ARCH effects (whether or not volatility varies over time) in the residuals from the selected ARIMA 

(1, 1, 1) model should be tested. The confirmation of the presence of ARCH effect indicates that the volatility in 

the average monthly return price volatility of Teff is time varying and appropriateness of employing GARCH 

family model (table-6). These results indicate that the respective return series under consideration have a non-

constant variance (heteroskedasticity) and need to be modeled using GARCH family models. 
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Table 6: ARCH effect test using LM test for squared residuals of the fitted model (Heteroskedasticity Test: 

ARCH) 

F-statistics  1.314545 Probability  0.00235 

Obs*R-squared 8.84546 Probability  0.002512 

Source: author’s estimation using Eviews-8 

3.7. Volatility Models 

3.7.1.  GARCH Family Model  

Once the ARCH effects are determined, then the optimal lag specifications for GARCH family models were 

determined prior to the construction of the final model to investigate the determinants of domestic price 

volatility. Even though there is consensus that GARCH (1, 1) family model is the most convenient specification 

in the financial literature [3, 13] to fit data with parsimonious model. But in this study we considered higher 

order models. As a result, the GARCH (1,1) family model is compared to various higher-order models from 1 

and 2 or two months relationship of volatilities, since GARCH family model was used for short-term forecasting  

based on the value of AIC and BIC. In our model selection procedure we first fit different GARCH family 

models of different orders of p and q. As we can see from the table GARCH(0,1) model under all distributional 

assumptions (under normal distribution, t-distribution and GED distribution), EGARCH(1, 1) model under 

normal distributional assumption for residuals were selected as candidate models for the domestic price 

volatility of Teff, since they possesses minimum AIC and/or BIC. Moreover, to select an appropriate conditional 

volatility model, we consider the forecasting performance of the selected GARCH family models. The 

forecasting performance of the fitted GARCH family models are evaluated by RMSE, MAE, MAPE and Theil 

inequality coefficients . The model with the smallest statistics is considered to be better fit for modeling the 

conditional volatility of the domestic price of Teff in Ethiopia. The results are summarized in Table 8. 

3.7.2. Parameter Estimation  

Table 7: ML parameter estimation of EGARCH (1, 1) model under student t-distribution 

Variables  Coefficient   Standard error  z-statistics  p-values  

Mean 

equations  

Constant  17.9874 11.2829 4.5942 0.0147 

AR(1) 0.6974 0.08059 8.6536 0.000 

MA(1) -1.1592 0.0704 -16.4571 0.000 

Variance equations  

 Coefficient   Standard error  z-statistics  p-values  

Constant  1.3180 0.1668 7.9004 0.000 

ARCH(-1) -2.8249 1.0162 -2.7797 0.0054 

GARCH(-1) -2.0585 1.1902 -1.7294 0.0037 

Asymmetric (-1)  0.9336 0.0086 107.9071 0.000 

Fuel oil  -0.3449 0.01466 -2.35 0.009 

Exchange rate 0.03651 0.00525 6.95 0.000 

Food -0.0005 0.0001 -5.41 0.000 

Non-food 0.00276 0.0092 10.30 0.003 

Constant  2.8102 0.3574 7.86 0.000 
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EGARCH (1, 1) model with Normal distributional assumption for residuals were selected as better fit models 

based on forecasting accuracy measures, then the next step is estimation of parameters to perform analysis of the 

determinants of average monthly domestic price volatility of coffee. The parameters in the mean and variance 

equations are estimated using the maximum likelihood (ML) estimation method. The results are shown in 

Tables-7.  

The results from the variance equation above show those among the explanatory variables which are considered 

in this study the coefficients of price of fuel oil and food price are negative and statistically significant at 1% 

level of significance. This shows that fuel oil price and food price has no significant impact on domestic price 

volatility of Teff. Alternatively the coefficients of price volatility of Teff, exchange rate (in birr against US 

dollar) and Non-food inflation rate are positive and statistically significant at 1% level of significance. That is 

price of Teff and non-food inflation rate has a positive significant effect on the current monthly domestic price 

volatility of Teff. This indicates that an increase in price volatility of Teff and non-food inflation rate leads to an 

increase in the monthly domestic price volatility of Teff. The results also show that the coefficient of 1 month 

lagged shocks (i.e ARCH (-1) GARCH (-1) terms) were negative and statistically significant at the 1% level. 

This shows that the current monthly domestic price volatility of Teff was affected by its 1-month lagged shocks. 

Additionally, the coefficient of the asymmetric term was positive and statistically significant at 1% level of 

significance. This indicating that bad news (unexpected increase in monthly domestic price of Teff) had larger 

impact on the domestic price volatility of Teff than good news (unexpected decrease in monthly domestic price 

volatility of Teff). 

3.7.3. Model Adequacy Checking 

In order to check whether the fitted model is a good fit to the data or not, that is the presence of remaining 

ARCH effect in the residuals, ARCH LM test and Ljung-Box Q-tests were performed. The Ljung-Box test 

indicates that the autocorrelations in the standardized residuals are not significantly different from zero for the 

first 24 lags (Tables-8). As can be seen from Table-8, the Breusch–Godfrey Serial Correlation LM test indicates 

that the standardized residuals of the fitted model did not exhibit any additional ARCH effect. 

Table 8: ARCH-LM test for standardized residuals of the fitted volatility model Heteroskedasticity Test: 

Breusch-Pagan-Godfrey 

F-statistic 0.653074 Prob. F(1,85) 0.4213 

Obs*R-squared 0.663344 Prob. Chi-Square(1) 0.4154 

Source: author’s estimation using Eviews-8 

3.7.4. Forecasting price volatility  

One of the fundamental uses of developing GARCH family models is forecasting. The volatility of domestic 

prices using variance as volatility measures was forecasted using the in-sample observations under statistic 

forecasting. The results are displayed as we can see from figure-4. 
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Figure 4: In-sample forecast of monthly domestic price volatility of Teff 

Figure 4 In-sample forecast of monthly price volatility of Teff 

As we can see from Figure 2, the domestic price volatility of Teff remained at almost a constant level at up to 

August, 2017 and increased steadily with increasing rate from the years end of August 2017 to January 2018, 

immediately drops sharply with increasing rate till March 2018 up to June 2018 and remained almost constant 

up to the end of the study. Moreover, high domestic price volatility was observed around the year February 

2021. 

4. Conclusion and recommendations 

4.1. Conclusion  

The study investigates forecasting average domestic price volatility of Teff in Ethiopia over the study periods 

from January 2014 to June 2021. Generalized Autoregressive Conditionally Heteroskedasticity (GARCH) 

family models including both symmetric models and asymmetric models were considered. The in-sample 

forecast using the best-fit EGARCH (1, 1) indicates that the price volatility of Teff remained at almost a 

constant level at up to August, 2017 and increased steadily with increasing rate from the year’s end of August 

2017 to January 2018. High price volatility was observed around the year February 2021. 

4.2. Recommendation  

The domestic price volatility of Teff was influenced by macroeconomic factors such as the exchange rate, food 

inflation rate, non-food inflation rate and fuel oil. Therefore, the government and concerned bodies should give 

due attention to these macroeconomic factors during policy formulation. Further studies should employ 
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multivariate models such as seasonal or dynamic conditional correlation multivariate models to analyze the 

time-varying correlation of the domestic price of Teff with other variables.  
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